Remove Latency Remove Servers Remove Tuning
article thumbnail

Migrating Critical Traffic At Scale with No Downtime?—?Part 1

The Netflix TechBlog

Migrating Critical Traffic At Scale with No Downtime — Part 1 Shyam Gala , Javier Fernandez-Ivern , Anup Rokkam Pratap , Devang Shah Hundreds of millions of customers tune into Netflix every day, expecting an uninterrupted and immersive streaming experience. We will examine these alternatives in the upcoming sections.

Traffic 347
article thumbnail

Introducing Netflix’s Key-Value Data Abstraction Layer

The Netflix TechBlog

These include challenges with tail latency and idempotency, managing “wide” partitions with many rows, handling single large “fat” columns, and slow response pagination. It also serves as central configuration of access patterns such as consistency or latency targets. Useful for keeping “n-newest” or prefix path deletion.

Latency 261
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Migrating Netflix to GraphQL Safely

The Netflix TechBlog

Before GraphQL: Monolithic Falcor API implemented and maintained by the API Team Before moving to GraphQL, our API layer consisted of a monolithic server built with Falcor. A single API team maintained both the Java implementation of the Falcor framework and the API Server. To launch Phase 1 safely, we used AB Testing.

Traffic 358
article thumbnail

Bending pause times to your will with Generational ZGC

The Netflix TechBlog

Reduced tail latencies In both our GRPC and DGS Framework services, GC pauses are a significant source of tail latencies. That’s particularly true of our GRPC clients and servers, where request cancellations due to timeouts interact with reliability features such as retries, hedging and fallbacks.

Latency 238
article thumbnail

Best Practice for Creating Indexes on your MySQL Tables

Scalegrid

95th Percentile Latency. The 95th percentile latency of queries was also 1.8 times higher when the index creation happened on the master server. The 95th percentile latency of queries was also 1.8 times higher when the index creation happened on the master server. Workload Throughput (Queries Per Second).

article thumbnail

Netflix’s Distributed Counter Abstraction

The Netflix TechBlog

By: Rajiv Shringi , Oleksii Tkachuk , Kartik Sathyanarayanan Introduction In our previous blog post, we introduced Netflix’s TimeSeries Abstraction , a distributed service designed to store and query large volumes of temporal event data with low millisecond latencies. Today, we’re excited to present the Distributed Counter Abstraction.

Latency 251
article thumbnail

Introducing Netflix TimeSeries Data Abstraction Layer

The Netflix TechBlog

Rajiv Shringi Vinay Chella Kaidan Fullerton Oleksii Tkachuk Joey Lynch Introduction As Netflix continues to expand and diversify into various sectors like Video on Demand and Gaming , the ability to ingest and store vast amounts of temporal data — often reaching petabytes — with millisecond access latency has become increasingly vital.

Latency 240