Remove Latency Remove Servers Remove Traffic
article thumbnail

Migrating Critical Traffic At Scale with No Downtime?—?Part 1

The Netflix TechBlog

Migrating Critical Traffic At Scale with No Downtime — Part 1 Shyam Gala , Javier Fernandez-Ivern , Anup Rokkam Pratap , Devang Shah Hundreds of millions of customers tune into Netflix every day, expecting an uninterrupted and immersive streaming experience. This approach has a handful of benefits.

Traffic 349
article thumbnail

Migrating Critical Traffic At Scale with No Downtime?—?Part 2

The Netflix TechBlog

Migrating Critical Traffic At Scale with No Downtime — Part 2 Shyam Gala , Javier Fernandez-Ivern , Anup Rokkam Pratap , Devang Shah Picture yourself enthralled by the latest episode of your beloved Netflix series, delighting in an uninterrupted, high-definition streaming experience. This is where large-scale system migrations come into play.

Traffic 287
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Optimising for High Latency Environments

CSS Wizardry

This gives fascinating insights into the network topography of our visitors, and how much we might be impacted by high latency regions. Round-trip-time (RTT) is basically a measure of latency—how long did it take to get from one endpoint to another and back again? What is RTT? RTT isn’t a you-thing, it’s a them-thing.

Latency 215
article thumbnail

Migrating Netflix to GraphQL Safely

The Netflix TechBlog

Before GraphQL: Monolithic Falcor API implemented and maintained by the API Team Before moving to GraphQL, our API layer consisted of a monolithic server built with Falcor. A single API team maintained both the Java implementation of the Falcor framework and the API Server. To launch Phase 1 safely, we used AB Testing.

Traffic 358
article thumbnail

Investigation of a Workbench UI Latency Issue

The Netflix TechBlog

Using this approach, we observed latencies ranging from 1 to 10 seconds, averaging 7.4 the ipykernel process) of the jupyter-lab server process , which means the main event loop being injected by pystan is that of the ipykernel process, not the jupyter-server process. The input to stdin is sent to the backend (i.e.,

Latency 217
article thumbnail

The Power of Caching: Boosting API Performance and Scalability

DZone

Benefits of Caching Improved performance: Caching eliminates the need to retrieve data from the original source every time, resulting in faster response times and reduced latency. Reduced server load: By serving cached content, the load on the server is reduced, allowing it to handle more requests and improving overall scalability.

Cache 246
article thumbnail

Introducing Netflix’s Key-Value Data Abstraction Layer

The Netflix TechBlog

These include challenges with tail latency and idempotency, managing “wide” partitions with many rows, handling single large “fat” columns, and slow response pagination. It also serves as central configuration of access patterns such as consistency or latency targets. Useful for keeping “n-newest” or prefix path deletion.

Latency 254