Remove Latency Remove Servers Remove Storage
article thumbnail

Introducing Netflix’s Key-Value Data Abstraction Layer

The Netflix TechBlog

These include challenges with tail latency and idempotency, managing “wide” partitions with many rows, handling single large “fat” columns, and slow response pagination. It also serves as central configuration of access patterns such as consistency or latency targets. Useful for keeping “n-newest” or prefix path deletion.

Latency 248
article thumbnail

Mastering Disk Space Management with MongoDB® Storage Engines

Scalegrid

MongoDB offers several storage engines that cater to various use cases. The default storage engine in earlier versions was MMAPv1, which utilized memory-mapped files and document-level locking. The newer, pluggable storage engine, WiredTiger, addresses this by using prefix compression, collection-level locking, and row-based storage.

Storage 130
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

What is a Distributed Storage System

Scalegrid

A distributed storage system is foundational in today’s data-driven landscape, ensuring data spread over multiple servers is reliable, accessible, and manageable. Understanding distributed storage is imperative as data volumes and the need for robust storage solutions rise.

Storage 130
article thumbnail

Introducing Netflix TimeSeries Data Abstraction Layer

The Netflix TechBlog

Rajiv Shringi Vinay Chella Kaidan Fullerton Oleksii Tkachuk Joey Lynch Introduction As Netflix continues to expand and diversify into various sectors like Video on Demand and Gaming , the ability to ingest and store vast amounts of temporal data — often reaching petabytes — with millisecond access latency has become increasingly vital.

Latency 236
article thumbnail

Netflix’s Distributed Counter Abstraction

The Netflix TechBlog

By: Rajiv Shringi , Oleksii Tkachuk , Kartik Sathyanarayanan Introduction In our previous blog post, we introduced Netflix’s TimeSeries Abstraction , a distributed service designed to store and query large volumes of temporal event data with low millisecond latencies. Today, we’re excited to present the Distributed Counter Abstraction.

Latency 224
article thumbnail

The Power of Caching: Boosting API Performance and Scalability

DZone

Caching is the process of storing frequently accessed data or resources in a temporary storage location, such as memory or disk, to improve retrieval speed and reduce the need for repetitive processing. Bandwidth optimization: Caching reduces the amount of data transferred over the network, minimizing bandwidth usage and improving efficiency.

Cache 246
article thumbnail

Pushy to the Limit: Evolving Netflix’s WebSocket proxy for the future

The Netflix TechBlog

By Karthik Yagna , Baskar Odayarkoil , and Alex Ellis Pushy is Netflix’s WebSocket server that maintains persistent WebSocket connections with devices running the Netflix application. KeyValue is an abstraction over the storage engine itself, which allows us to choose the best storage engine that meets our SLO needs.

Latency 228