Remove Latency Remove Processing Remove Tuning
article thumbnail

Netflix’s Distributed Counter Abstraction

The Netflix TechBlog

By: Rajiv Shringi , Oleksii Tkachuk , Kartik Sathyanarayanan Introduction In our previous blog post, we introduced Netflix’s TimeSeries Abstraction , a distributed service designed to store and query large volumes of temporal event data with low millisecond latencies. Today, we’re excited to present the Distributed Counter Abstraction.

Latency 251
article thumbnail

How to Optimize CPU Performance Through Isolation and System Tuning

DZone

CPU isolation and efficient system management are critical for any application which requires low-latency and high-performance computing. To achieve this level of performance, such systems require dedicated CPU cores that are free from interruptions by other processes, together with wider system tuning.

Tuning 253
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Foundation Model for Personalized Recommendation

The Netflix TechBlog

Yet, many are confined to a brief temporal window due to constraints in serving latency or training costs. It facilitates the distribution of these learnings to other models, either through shared model weights for fine tuning or directly through embeddings. However, as in LLMs, the quality of data often outweighs its sheer volume.

Tuning 145
article thumbnail

Introducing Impressions at Netflix

The Netflix TechBlog

It requires a state-of-the-art system that can track and process these impressions while maintaining a detailed history of each profiles exposure. In this multi-part blog series, we take you behind the scenes of our system that processes billions of impressions daily.

Tuning 166
article thumbnail

RabbitMQ vs. Kafka: Key Differences

Scalegrid

RabbitMQ is designed for flexible routing and message reliability, while Kafka handles high-throughput event streaming and real-time data processing. RabbitMQ follows a message broker model with advanced routing, while Kafkas event streaming architecture uses partitioned logs for distributed processing. What is Apache Kafka?

Latency 147
article thumbnail

Rebuilding Netflix Video Processing Pipeline with Microservices

The Netflix TechBlog

Future blogs will provide deeper dives into each service, sharing insights and lessons learned from this process. The Netflix video processing pipeline went live with the launch of our streaming service in 2007. The Netflix video processing pipeline went live with the launch of our streaming service in 2007.

article thumbnail

Why applying chaos engineering to data-intensive applications matters

Dynatrace

Stream processing One approach to such a challenging scenario is stream processing, a computing paradigm and software architectural style for data-intensive software systems that emerged to cope with requirements for near real-time processing of massive amounts of data. This significantly increases event latency.