Remove Engineering Remove Latency Remove Storage
article thumbnail

Build systems more reliably with Dynatrace: Chaos Engineering

Dynatrace

These releases often assumed ideal conditions such as zero latency, infinite bandwidth, and no network loss, as highlighted in Peter Deutsch’s eight fallacies of distributed systems. Chaos engineering is a practice that extends beyond traditional failure testing by identifying unpredictable issues.

article thumbnail

Optimizing data warehouse storage

The Netflix TechBlog

At this scale, we can gain a significant amount of performance and cost benefits by optimizing the storage layout (records, objects, partitions) as the data lands into our warehouse. We built AutoOptimize to efficiently and transparently optimize the data and metadata storage layout while maximizing their cost and performance benefits.

Storage 212
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Introducing Impressions at Netflix

The Netflix TechBlog

Every image you hover over isnt just a visual placeholder; its a critical data point that fuels our sophisticated personalization engine. The enriched data is seamlessly accessible for both real-time applications via Kafka and historical analysis through storage in an Apache Iceberg table.

Tuning 166
article thumbnail

Mastering Disk Space Management with MongoDB® Storage Engines

Scalegrid

MongoDB offers several storage engines that cater to various use cases. The default storage engine in earlier versions was MMAPv1, which utilized memory-mapped files and document-level locking. Choosing the appropriate storage engine can have a significant impact on application performance.

Storage 130
article thumbnail

Introducing Netflix’s Key-Value Data Abstraction Layer

The Netflix TechBlog

These include challenges with tail latency and idempotency, managing “wide” partitions with many rows, handling single large “fat” columns, and slow response pagination. It also serves as central configuration of access patterns such as consistency or latency targets. Useful for keeping “n-newest” or prefix path deletion.

Latency 260
article thumbnail

Designing Instagram

High Scalability

Machine Learning Engineer at Amazon and has led several machine-learning initiatives across the Amazon ecosystem. FUN FACT : In this talk , Rodrigo Schmidt, director of engineering at Instagram talks about the different challenges they have faced in scaling the data infrastructure at Instagram. This is a guest post by Ankit Sirmorya.

Design 334
article thumbnail

Title Launch Observability at Netflix Scale

The Netflix TechBlog

The Challenge of Title Launch Observability As engineers, were wired to track system metrics like error rates, latencies, and CPU utilizationbut what about metrics that matter to a titlessuccess? While reengineering these systems to accommodate this additional axis is possible, it would entail increased costs.

Traffic 172