article thumbnail

Exploring Parallel Processing: SIMD vs. MIMD Architectures

DZone

In the landscape of computer architecture, two prominent paradigms shape the realm of parallel processing: SIMD (Single Instruction, Multiple Data) and MIMD (Multiple Instruction, Multiple Data) architectures. This approach enables efficient processing of large datasets by applying the same operation to multiple elements concurrently.

article thumbnail

Medallion Architecture: Efficient Batch and Stream Processing Data Pipelines With Azure Databricks and Delta Lake

DZone

In today's data-driven world, organizations need efficient and scalable data pipelines to process and analyze large volumes of data. Medallion Architecture provides a framework for organizing data processing workflows into different zones, enabling optimized batch and stream processing.

Azure 246
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Cutting Big Data Costs: Effective Data Processing With Apache Spark

DZone

In today's data-driven world, efficient data processing plays a pivotal role in the success of any project. Apache Spark , a robust open-source data processing framework, has emerged as a game-changer in this domain.

Big Data 279
article thumbnail

Perform 2023 Guide: Organizations mine efficiencies with automation, causal AI

Dynatrace

They now use modern observability to monitor expanding cloud environments in order to operate more efficiently, innovate faster and more securely, and to deliver consistently better business results. Further, automation has become a core strategy as organizations migrate to and operate in the cloud. What is a data lakehouse?

article thumbnail

Batch Processing vs. Stream Processing: Why Batch Is Dying and Streaming Takes Over

DZone

With this data comes the challenge of processing it in a timely and efficient way. Companies worldwide are investing in technologies that can help them better process, analyze, and use the data they are collecting to better serve their customers and stay ahead of their competitors. Let’s recap some of the basics first.

article thumbnail

Business Flow: Why IT operations teams should monitor business processes

Dynatrace

The business process observability challenge Increasingly dynamic business conditions demand business agility; reacting to a supply chain disruption and optimizing order fulfillment are simple but illustrative examples. Most business processes are not monitored. First and foremost, it’s a data problem.

article thumbnail

Improving customer experience with business process monitoring

Dynatrace

A business process is a collection of related, usually structured tasks or steps, performed in sequence, that achieve a defined business goal. Tasks may be manual or automatic, and many business processes will include a combination of both. Make better decisions by providing managers with real-time data about the business.