article thumbnail

Dynatrace elevates data security with separated storage and unique encryption keys for each tenant

Dynatrace

Dynatrace continues to deliver on its commitment to keeping your data secure in the cloud. Enhancing data separation by partitioning each customer’s data on the storage level and encrypting it with a unique encryption key adds an additional layer of protection against unauthorized data access.

Storage 200
article thumbnail

Data Storage Formats for Big Data Analytics: Performance and Cost Implications of Parquet, Avro, and ORC

DZone

Efficient data processing is crucial for businesses and organizations that rely on big data analytics to make informed decisions. One key factor that significantly affects the performance of data processing is the storage format of the data.

Big Data 278
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Introduction to Azure Data Lake Storage Gen2

DZone

Built on Azure Blob Storage, Azure Data Lake Storage Gen2 is a suite of features for big data analytics. Azure Data Lake Storage Gen1 and Azure Blob Storage's capabilities are combined in Data Lake Storage Gen2.

Azure 250
article thumbnail

Storage Types Used on Cloud Computing Platforms

DZone

Cloud computing platforms have fundamentally altered how organizations access and manage data. Because of the emergence of cloud services, a broad range of storage choices are now easily available to fulfill the different demands of both organizations and people.

Storage 276
article thumbnail

Optimizing data warehouse storage

The Netflix TechBlog

By Anupom Syam Background At Netflix, our current data warehouse contains hundreds of Petabytes of data stored in AWS S3 , and each day we ingest and create additional Petabytes. We built AutoOptimize to efficiently and transparently optimize the data and metadata storage layout while maximizing their cost and performance benefits.

Storage 209
article thumbnail

Introducing Netflix TimeSeries Data Abstraction Layer

The Netflix TechBlog

Rajiv Shringi Vinay Chella Kaidan Fullerton Oleksii Tkachuk Joey Lynch Introduction As Netflix continues to expand and diversify into various sectors like Video on Demand and Gaming , the ability to ingest and store vast amounts of temporal data — often reaching petabytes — with millisecond access latency has become increasingly vital.

Latency 236
article thumbnail

Introducing Netflix’s Key-Value Data Abstraction Layer

The Netflix TechBlog

Second, developers had to constantly re-learn new data modeling practices and common yet critical data access patterns. To overcome these challenges, we developed a holistic approach that builds upon our Data Gateway Platform. Data Model At its core, the KV abstraction is built around a two-level map architecture.

Latency 248