Remove Data Remove Processing Remove Storage
article thumbnail

Data Storage Formats for Big Data Analytics: Performance and Cost Implications of Parquet, Avro, and ORC

DZone

Efficient data processing is crucial for businesses and organizations that rely on big data analytics to make informed decisions. One key factor that significantly affects the performance of data processing is the storage format of the data.

Big Data 278
article thumbnail

Cutting Big Data Costs: Effective Data Processing With Apache Spark

DZone

In today's data-driven world, efficient data processing plays a pivotal role in the success of any project. Apache Spark , a robust open-source data processing framework, has emerged as a game-changer in this domain.

Big Data 279
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Optimizing data warehouse storage

The Netflix TechBlog

By Anupom Syam Background At Netflix, our current data warehouse contains hundreds of Petabytes of data stored in AWS S3 , and each day we ingest and create additional Petabytes. On the other hand, these optimizations themselves need to be sufficiently inexpensive to justify their own processing cost over the gains they bring.

Storage 212
article thumbnail

What is Greenplum Database? Intro to the Big Data Database

Scalegrid

Greenplum Database is a massively parallel processing (MPP) SQL database that is built and based on PostgreSQL. It can scale towards a multi-petabyte level data workload without a single issue, and it allows access to a cluster of powerful servers that will work together within a single SQL interface where you can view all of the data.

Big Data 321
article thumbnail

Medallion Architecture: Efficient Batch and Stream Processing Data Pipelines With Azure Databricks and Delta Lake

DZone

In today's data-driven world, organizations need efficient and scalable data pipelines to process and analyze large volumes of data. Medallion Architecture provides a framework for organizing data processing workflows into different zones, enabling optimized batch and stream processing.

Azure 246
article thumbnail

Dynatrace elevates data security with separated storage and unique encryption keys for each tenant

Dynatrace

Dynatrace continues to deliver on its commitment to keeping your data secure in the cloud. Enhancing data separation by partitioning each customer’s data on the storage level and encrypting it with a unique encryption key adds an additional layer of protection against unauthorized data access.

Storage 191
article thumbnail

Using JSONB in PostgreSQL: How to Effectively Store & Index JSON Data in PostgreSQL

Scalegrid

It is an open standard format which organizes data into key/value pairs and arrays detailed in RFC 7159. JSON is the most common format used by web services to exchange data, store documents, unstructured data, etc. You can also check out our Working with JSON Data in PostgreSQL vs. JSONB Patterns & Antipatterns.

Storage 321