Remove Data Remove Efficiency Remove Processing
article thumbnail

Cutting Big Data Costs: Effective Data Processing With Apache Spark

DZone

In today's data-driven world, efficient data processing plays a pivotal role in the success of any project. Apache Spark , a robust open-source data processing framework, has emerged as a game-changer in this domain.

Big Data 279
article thumbnail

Medallion Architecture: Efficient Batch and Stream Processing Data Pipelines With Azure Databricks and Delta Lake

DZone

In today's data-driven world, organizations need efficient and scalable data pipelines to process and analyze large volumes of data. Medallion Architecture provides a framework for organizing data processing workflows into different zones, enabling optimized batch and stream processing.

Azure 246
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data Mesh?—?A Data Movement and Processing Platform @ Netflix

The Netflix TechBlog

Data Mesh?—?A A Data Movement and Processing Platform @ Netflix By Bo Lei , Guilherme Pires , James Shao , Kasturi Chatterjee , Sujay Jain , Vlad Sydorenko Background Realtime processing technologies (A.K.A Last year we wrote a blog post about how Data Mesh helped our Studio team enable data movement use cases.

article thumbnail

Exploring Parallel Processing: SIMD vs. MIMD Architectures

DZone

In the landscape of computer architecture, two prominent paradigms shape the realm of parallel processing: SIMD (Single Instruction, Multiple Data) and MIMD (Multiple Instruction, Multiple Data) architectures.

article thumbnail

2. Diving Deeper into Psyberg: Stateless vs Stateful Data Processing

The Netflix TechBlog

By Abhinaya Shetty , Bharath Mummadisetty In the inaugural blog post of this series, we introduced you to the state of our pipelines before Psyberg and the challenges with incremental processing that led us to create the Psyberg framework within Netflix’s Membership and Finance data engineering team.

article thumbnail

Essential Guidelines for Building Optimized ETL Data Pipelines in the Cloud With Azure Data Factory

DZone

When building ETL data pipelines using Azure Data Factory (ADF) to process huge amounts of data from different sources, you may often run into performance and design-related challenges. This article will serve as a guide in building high-performance ETL pipelines that are both efficient and scalable.

Azure 306
article thumbnail

Batch Processing for Data Integration

DZone

In the labyrinth of data-driven architectures, the challenge of data integration—fusing data from disparate sources into a coherent, usable form — stands as one of the cornerstones. As businesses amass data at an unprecedented pace, the question of how to integrate this data effectively comes to the fore.