This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Our Flink configuration includes 8 task managers per region, each equipped with 8 CPU cores and 32GB of memory, operating at a parallelism of 48, allowing us to handle the necessary scale and speed for seamless performance delivery. This approach will enhance efficiency, reduce manual oversight, and ensure a higher standard of data integrity.
And in order to gain visibility into these logs, we need to somehow ingest and enrich this data. It is easier to tune a large Spark job for a consistent volume of data. In other words, we are able to ensure that our Spark app does not “eat” more data than it was tuned to handle. We named this library Sqooby.
The folks on the Cloud DataEngineering (CDE) team, the ones building the paved path for internal data at Netflix, graciously helped us scale it up and make adjustments, but it ended up being an involved process as we kept growing. We’ll be writing about those new features as well — stay tuned for future posts.
These challenges are currently addressed in suboptimal and less cost efficient ways by individual local teams to fulfill the needs, such as Lookback: This is a generic and simple approach that dataengineers use to solve the data accuracy problem. Users configure the workflow to read the data in a window (e.g.
Because you are changing team composition, you need robust norms of conduct and engineering practices in place. Secondly, fine-tune team composition based on work. Thirdly, let engineers themselves choose the delivery teams and organise them around the initiative. Velocity is directional (a vector in mathematical term).
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content