article thumbnail

Data Engineers of Netflix?—?Interview with Kevin Wylie

The Netflix TechBlog

Data Engineers of Netflix?—?Interview Interview with Kevin Wylie This post is part of our “Data Engineers of Netflix” series, where our very own data engineers talk about their journeys to Data Engineering @ Netflix. Kevin, what drew you to data engineering?

article thumbnail

Data Engineers of Netflix?—?Interview with Samuel Setegne

The Netflix TechBlog

Data Engineers of Netflix?—?Interview Interview with Samuel Setegne Samuel Setegne This post is part of our “Data Engineers of Netflix” interview series, where our very own data engineers talk about their journeys to Data Engineering @ Netflix. What drew you to Netflix?

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Automated Testing in Data Engineering: An Imperative for Quality and Efficiency

DZone

This holds true for the critical field of data engineering as well. As organizations gather and process astronomical volumes of data, manual testing is no longer feasible or reliable. Automated testing methodologies are now imperative to deliver speed, accuracy, and integrity.

article thumbnail

Secrets Detection: Optimizing Filter Processes

DZone

While increasing both the precision and the recall of our secrets detection engine, we felt the need to keep a close eye on speed. In a gearbox, if you want to increase torque, you need to decrease speed. So it wasn’t a surprise to find that our engine had the same problem: more power, less speed.

article thumbnail

Introducing Impressions at Netflix

The Netflix TechBlog

Our Flink configuration includes 8 task managers per region, each equipped with 8 CPU cores and 32GB of memory, operating at a parallelism of 48, allowing us to handle the necessary scale and speed for seamless performance delivery.

Tuning 166
article thumbnail

Ready-to-go sample data pipelines with Dataflow

The Netflix TechBlog

Having a well-documented starting point removes some of the struggle that comes with starting from scratch and considerably speeds up the first iteration of the development cycle. Onboarding Ramping up on a new team or a business vertical always takes some effort, especially in a “highly aligned, loosely coupled” culture.

article thumbnail

How Data Inspires Building a Scalable, Resilient and Secure Cloud Infrastructure At Netflix

The Netflix TechBlog

While our engineering teams have and continue to build solutions to lighten this cognitive load (better guardrails, improved tooling, …), data and its derived products are critical elements to understanding, optimizing and abstracting our infrastructure. Give us a holler if you are interested in a thought exchange.