Remove Data Engineering Remove Processing Remove Speed
article thumbnail

Data Engineers of Netflix?—?Interview with Kevin Wylie

The Netflix TechBlog

Data Engineers of Netflix?—?Interview Interview with Kevin Wylie This post is part of our “Data Engineers of Netflix” series, where our very own data engineers talk about their journeys to Data Engineering @ Netflix. Kevin, what drew you to data engineering?

article thumbnail

Secrets Detection: Optimizing Filter Processes

DZone

While increasing both the precision and the recall of our secrets detection engine, we felt the need to keep a close eye on speed. In a gearbox, if you want to increase torque, you need to decrease speed. So it wasn’t a surprise to find that our engine had the same problem: more power, less speed.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Incremental Processing using Netflix Maestro and Apache Iceberg

The Netflix TechBlog

by Jun He , Yingyi Zhang , and Pawan Dixit Incremental processing is an approach to process new or changed data in workflows. The key advantage is that it only incrementally processes data that are newly added or updated to a dataset, instead of re-processing the complete dataset.

article thumbnail

Data Engineers of Netflix?—?Interview with Samuel Setegne

The Netflix TechBlog

Data Engineers of Netflix?—?Interview Interview with Samuel Setegne Samuel Setegne This post is part of our “Data Engineers of Netflix” interview series, where our very own data engineers talk about their journeys to Data Engineering @ Netflix. What drew you to Netflix?

article thumbnail

Automated Testing in Data Engineering: An Imperative for Quality and Efficiency

DZone

This holds true for the critical field of data engineering as well. As organizations gather and process astronomical volumes of data, manual testing is no longer feasible or reliable. Automated testing methodologies are now imperative to deliver speed, accuracy, and integrity.

article thumbnail

Introducing Impressions at Netflix

The Netflix TechBlog

It requires a state-of-the-art system that can track and process these impressions while maintaining a detailed history of each profiles exposure. This nuanced integration of data and technology empowers us to offer bespoke content recommendations. This queue ensures we are consistently capturing raw events from our global userbase.

Tuning 166
article thumbnail

Ready-to-go sample data pipelines with Dataflow

The Netflix TechBlog

Obviously not all tools are made with the same use case in mind, so we are planning to add more code samples for other (than classical batch ETL) data processing purposes, e.g. Machine Learning model building and scoring. This allows other processes, consuming our table, to be notified and start their processing.