This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
In softwareengineering, we've learned that building robust and stable applications has a direct correlation with overall organization performance. The data community is striving to incorporate the core concepts of engineering rigor found in software communities but still has further to go. Posted with permission.
Building and Scaling Data Lineage at Netflix to Improve Data Infrastructure Reliability, and Efficiency By: Di Lin , Girish Lingappa , Jitender Aswani Imagine yourself in the role of a data-inspired decision maker staring at a metric on a dashboard about to make a critical business decision but pausing to ask a question?—?“Can
In this session, we discuss the technologies used to run a global streaming company, growing at scale, billions of metrics, benefits of chaos in production, and how culture affects your velocity and uptime. Wednesday?—?December This session looks at what it takes to accept, produce, encode, and stream your favorite content.
The need for backfilling could be due to a variety of factors, e.g. (1) upstream data sets got repopulated due to changes in business logic of its data pipeline, (2) business logic was changed in a data pipeline, (3) anew metric was created that needs to be populated for historical time ranges, (4) historical data was found missing, etc.
In this session, we discuss the technologies used to run a global streaming company, growing at scale, billions of metrics, benefits of chaos in production, and how culture affects your velocity and uptime. Wednesday?—?December This session looks at what it takes to accept, produce, encode, and stream your favorite content.
In this session, we discuss the technologies used to run a global streaming company, growing at scale, billions of metrics, benefits of chaos in production, and how culture affects your velocity and uptime. Wednesday?—?December This session looks at what it takes to accept, produce, encode, and stream your favorite content.
For instance, if you are fast-growing VC funded e-commerce startup and your number one business priority is multiplying current growth and performing exceptionally well on key financial metrics charted out by your investors. Is it possible to draw inspiration from outside of softwareengineering? You want to move fast.
I asked around and heard that they are still working on it, but the AWS hiring freeze means that they don’t have the headcount they expected and are making slow progress on an API, more detailed metrics, and scope 3, which everyone is waiting for. Portfolio is currently reducing Amazons carbon footprint by 19 Million Metric Tons of CO2e.
To learn about Analytics and Viz Engineering, have a look at Analytics at Netflix: Who We Are and What We Do by Molly Jackman & Meghana Reddy and How Our Paths Brought Us to Data and Netflix by Julie Beckley & Chris Pham. Curious to learn about what it’s like to be a DataEngineer at Netflix? Sensitivity analysis.
Entirely new paradigms rise quickly: cloud computing, dataengineering, machine learning engineering, mobile development, and large language models. To further complicate things, topics like cloud computing, software operations, and even AI don’t fit nicely within a university IT department.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content