Remove Data Engineering Remove Latency Remove Tuning
article thumbnail

Introducing Impressions at Netflix

The Netflix TechBlog

This dual-path approach leverages Kafkas capability for low-latency streaming and Icebergs efficient management of large-scale, immutable datasets, ensuring both real-time responsiveness and comprehensive historical data availability. million impression events globally every second, with each event approximately 1.2KB in size.

Tuning 165
article thumbnail

Pushy to the Limit: Evolving Netflix’s WebSocket proxy for the future

The Netflix TechBlog

Dynomite is a Netflix open source wrapper around Redis that provides a few additional features like auto-sharding and cross-region replication, and it provided Pushy with low latency and easy record expiry, both of which are critical for Pushy’s workload. As Pushy’s portfolio grew, we experienced some pain points with Dynomite.

Latency 230
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Optimizing data warehouse storage

The Netflix TechBlog

Some of the optimizations are prerequisites for a high-performance data warehouse. Sometimes Data Engineers write downstream ETLs on ingested data to optimize the data/metadata layouts to make other ETL processes cheaper and faster. Orient: Gather tuning parameters for a particular table that changed.

Storage 208
article thumbnail

Evolving from Rule-based Classifier: Machine Learning Powered Auto Remediation in Netflix Data…

The Netflix TechBlog

Operational automation–including but not limited to, auto diagnosis, auto remediation, auto configuration, auto tuning, auto scaling, auto debugging, and auto testing–is key to the success of modern data platforms. We have also noted a great potential for further improvement by model tuning (see the section of Rollout in Production).

Tuning 213
article thumbnail

Incremental Processing using Netflix Maestro and Apache Iceberg

The Netflix TechBlog

Whether in analyzing A/B tests, optimizing studio production, training algorithms, investing in content acquisition, detecting security breaches, or optimizing payments, well structured and accurate data is foundational. Users configure the workflow to read the data in a window (e.g. data arrives too late to be useful).

article thumbnail

Formulating ‘Out of Memory Kill’ Prediction on the Netflix App as a Machine Learning Problem

The Netflix TechBlog

Since memory management is not something one usually associates with classification problems, this blog focuses on formulating the problem as an ML problem and the data engineering that goes along with it. Some nuances while creating this dataset come from the on-field domain knowledge of our engineers.

Big Data 184
article thumbnail

Friends don't let friends build data pipelines

Abhishek Tiwari

Unfortunately, building data pipelines remains a daunting, time-consuming, and costly activity. Not everyone is operating at Netflix or Spotify scale data engineering function. Often companies underestimate the necessary effort and cost involved to build and maintain data pipelines.

Latency 63