This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Engineers from across the company came together to share best practices on everything from Data Processing Patterns to Building Reliable Data Pipelines. The result was a series of talks which we are now sharing with the rest of the DataEngineering community!
In softwareengineering, we've learned that building robust and stable applications has a direct correlation with overall organization performance. The data community is striving to incorporate the core concepts of engineering rigor found in software communities but still has further to go. Posted with permission.
A summary of sessions at the first DataEngineering Open Forum at Netflix on April 18th, 2024 The DataEngineering Open Forum at Netflix on April 18th, 2024. At Netflix, we aspire to entertain the world, and our dataengineering teams play a crucial role in this mission by enabling data-driven decision-making at scale.
DataEngineers of Netflix?—?Interview Interview with Pallavi Phadnis This post is part of our “ DataEngineers of Netflix ” series, where our very own dataengineers talk about their journeys to DataEngineering @ Netflix. Pallavi Phadnis is a Senior SoftwareEngineer at Netflix.
DataEngineers of Netflix?—?Interview Interview with Dhevi Rajendran Dhevi Rajendran This post is part of our “DataEngineers of Netflix” interview series, where our very own dataengineers talk about their journeys to DataEngineering @ Netflix.
DataEngineers of Netflix?—?Interview Interview with Samuel Setegne Samuel Setegne This post is part of our “DataEngineers of Netflix” interview series, where our very own dataengineers talk about their journeys to DataEngineering @ Netflix. What drew you to Netflix?
By Astha Singhal , Lakshmi Sudheer , Julia Knecht The Application Security teams at Netflix are responsible for securing the software footprint that we create to run the Netflix product, the Netflix studio, and the business. Our customers are product and engineering teams at Netflix that build these software services and platforms.
Now, imagine yourself in the role of a softwareengineer responsible for a micro-service which publishes data consumed by few critical customer facing services (e.g. You are about to make structural changes to the data and want to know who and what downstream to your service will be impacted.
by Shefali Vyas Dalal AWS re:Invent is a couple weeks away and our engineers & leaders are thrilled to be in attendance yet again this year! Technology advancements in content creation and consumption have also increased its data footprint. Please stop by our “Living Room” for an opportunity to connect or reconnect with Netflixers.
It also improves the engineering productivity by simplifying the existing pipelines and unlocking the new patterns. Users configure the workflow to read the data in a window (e.g. The window is set based on users’ domain knowledge so that users have a high confidence that the late arriving data will be included or will not matter (i.e.
Usability Netflix is a data-driven company, where key decisions are driven by data insights, from the pixel color used on the landing page to the renewal of a TV-series. Data scientists, engineers, non-engineers, and even content producers all run their data pipelines to get the necessary insights.
Sisu Data is looking for machine learning engineers who are eager to deliver their features end-to-end, from Jupyter notebook to production, and provide actionable insights to businesses based on their first-party, streaming, and structured relational data. Apply here. Try the 30-day free trial!
Sisu Data is looking for machine learning engineers who are eager to deliver their features end-to-end, from Jupyter notebook to production, and provide actionable insights to businesses based on their first-party, streaming, and structured relational data. Apply here. Try the 30-day free trial!
Scrapinghub is hiring a Senior SoftwareEngineer (Big Data/AI). this is going to be a challenging journey for any backend engineer! this is going to be a challenging journey for any backend engineer! Triplebyte is unique because they're a team of engineers running their own centralized technical assessment.
Scrapinghub is hiring a Senior SoftwareEngineer (Big Data/AI). this is going to be a challenging journey for any backend engineer! this is going to be a challenging journey for any backend engineer! Triplebyte is unique because they're a team of engineers running their own centralized technical assessment.
Sisu Data is looking for machine learning engineers who are eager to deliver their features end-to-end, from Jupyter notebook to production, and provide actionable insights to businesses based on their first-party, streaming, and structured relational data. Apply here. Try the 30-day free trial!
Scrapinghub is hiring a Senior SoftwareEngineer (Big Data/AI). this is going to be a challenging journey for any backend engineer! this is going to be a challenging journey for any backend engineer! Triplebyte is unique because they're a team of engineers running their own centralized technical assessment.
Scrapinghub is hiring a Senior SoftwareEngineer (Big Data/AI). this is going to be a challenging journey for any backend engineer! this is going to be a challenging journey for any backend engineer! Triplebyte is unique because they're a team of engineers running their own centralized technical assessment.
Scrapinghub is hiring a Senior SoftwareEngineer (Big Data/AI). this is going to be a challenging journey for any backend engineer! this is going to be a challenging journey for any backend engineer! Triplebyte is unique because they're a team of engineers running their own centralized technical assessment.
Sisu Data is looking for machine learning engineers who are eager to deliver their features end-to-end, from Jupyter notebook to production, and provide actionable insights to businesses based on their first-party, streaming, and structured relational data. Apply here. Try the 30-day free trial!
Sisu Data is looking for machine learning engineers who are eager to deliver their features end-to-end, from Jupyter notebook to production, and provide actionable insights to businesses based on their first-party, streaming, and structured relational data. Apply here. Try the 30-day free trial!
Sisu Data is looking for machine learning engineers who are eager to deliver their features end-to-end, from Jupyter notebook to production, and provide actionable insights to businesses based on their first-party, streaming, and structured relational data. Apply here. Try the 30-day free trial!
Scrapinghub is hiring a Senior SoftwareEngineer (Big Data/AI). this is going to be a challenging journey for any backend engineer! this is going to be a challenging journey for any backend engineer! Created by former senior-level AWS engineers of 15 years. Try out their platform. Please apply here.
Sisu Data is looking for machine learning engineers who are eager to deliver their features end-to-end, from Jupyter notebook to production, and provide actionable insights to businesses based on their first-party, streaming, and structured relational data. Apply here. Try the 30-day free trial!
Sisu Data is looking for machine learning engineers who are eager to deliver their features end-to-end, from Jupyter notebook to production, and provide actionable insights to businesses based on their first-party, streaming, and structured relational data. Apply here. Try the 30-day free trial!
When it comes to organising engineering teams, a popular view has been to organise your teams based on either Spotify's agile model (i.e. One thing stand-out to me is being intentional and practical about your engineering organisation design. squads, chapters, tribes, and guilds) or simply follow Amazon's two-pizza team model.
Sisu Data is looking for machine learning engineers who are eager to deliver their features end-to-end, from Jupyter notebook to production, and provide actionable insights to businesses based on their first-party, streaming, and structured relational data. Apply here. Try the 30-day free trial!
Sisu Data is looking for machine learning engineers who are eager to deliver their features end-to-end, from Jupyter notebook to production, and provide actionable insights to businesses based on their first-party, streaming, and structured relational data. Apply here. Try the 30-day free trial!
by Shefali Vyas Dalal AWS re:Invent is a couple weeks away and our engineers & leaders are thrilled to be in attendance yet again this year! Technology advancements in content creation and consumption have also increased its data footprint. We’ve compiled our speaking events below so you know what we’ve been working on.
by Shefali Vyas Dalal AWS re:Invent is a couple weeks away and our engineers & leaders are thrilled to be in attendance yet again this year! Technology advancements in content creation and consumption have also increased its data footprint. We’ve compiled our speaking events below so you know what we’ve been working on.
Collaboration between AI developers and operations teams will lead to growing pains on both sides, especially since many data scientists and AI researchers have had limited exposure to, or knowledge of, softwareengineering.
Softwareengineers comprise the survey audience’s single largest cluster, over one quarter (27%) of respondents (Figure 1). software and systems architects, technical leads—architects represent almost 28% of the sample. Complexity is an engineering problem, and engineering problems are always about tradeoffs.
SUS206 Sustainability and AWS silicon — Kamran Khan AWS Senior Product Manager Inferential/Trainium/FPGA, David Chaiken Pinterest Chief Architect, and Paul Mazurkiewicz AWS Senior Principal Engineer. Excellent talk on the NOAA programs to share data and build communities around it.
Here we describe the role of Experimentation and A/B testing within the larger Data Science and Engineering organization at Netflix, including how our platform investments support running tests at scale while enabling innovation. Curious to learn more about other Data Science and Engineering functions at Netflix?
Entirely new paradigms rise quickly: cloud computing, dataengineering, machine learning engineering, mobile development, and large language models. To further complicate things, topics like cloud computing, software operations, and even AI don’t fit nicely within a university IT department.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content