Remove Data Engineering Remove Efficiency Remove Scalability
article thumbnail

A Recap of the Data Engineering Open Forum at Netflix

The Netflix TechBlog

A summary of sessions at the first Data Engineering Open Forum at Netflix on April 18th, 2024 The Data Engineering Open Forum at Netflix on April 18th, 2024. At Netflix, we aspire to entertain the world, and our data engineering teams play a crucial role in this mission by enabling data-driven decision-making at scale.

article thumbnail

How Data Inspires Building a Scalable, Resilient and Secure Cloud Infrastructure At Netflix

The Netflix TechBlog

As a micro-service owner, a Netflix engineer is responsible for its innovation as well as its operation, which includes making sure the service is reliable, secure, efficient and performant. In the Efficiency space, our data teams focus on transparency and optimization.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Building and Scaling Data Lineage at Netflix to Improve Data Infrastructure Reliability, and…

The Netflix TechBlog

Building and Scaling Data Lineage at Netflix to Improve Data Infrastructure Reliability, and Efficiency By: Di Lin , Girish Lingappa , Jitender Aswani Imagine yourself in the role of a data-inspired decision maker staring at a metric on a dashboard about to make a critical business decision but pausing to ask a question?—?“Can

article thumbnail

How TripleLift Built an Adtech Data Pipeline Processing Billions of Events Per Day

High Scalability

This is a guest post by Eunice Do , Data Engineer at TripleLift , a technology company leading the next generation of programmatic advertising. The system is the data pipeline at TripleLift. TripleLift is an adtech company, and like most companies in this industry, we deal with high volumes of data on a daily basis.

article thumbnail

These 7 Edge Data Challenges Will Test Companies the Most in 2025

VoltDB

As data streams grow in complexity, processing efficiency can decline. Inconsistent network performance affecting data synchronization. Introduce scalable microservices architectures to distribute computational loads efficiently. Key issues include: High energy consumption for data processing and cooling.

IoT 52
article thumbnail

Optimizing data warehouse storage

The Netflix TechBlog

We built AutoOptimize to efficiently and transparently optimize the data and metadata storage layout while maximizing their cost and performance benefits. This article will list some of the use cases of AutoOptimize, discuss the design principles that help enhance efficiency, and present the high-level architecture.

Storage 208
article thumbnail

Incremental Processing using Netflix Maestro and Apache Iceberg

The Netflix TechBlog

It also improves the engineering productivity by simplifying the existing pipelines and unlocking the new patterns. We will show how we are building a clean and efficient incremental processing solution (IPS) by using Netflix Maestro and Apache Iceberg. Users configure the workflow to read the data in a window (e.g.