Remove Data Engineering Remove Efficiency Remove Processing
article thumbnail

Our First Netflix Data Engineering Summit

The Netflix TechBlog

Engineers from across the company came together to share best practices on everything from Data Processing Patterns to Building Reliable Data Pipelines. The result was a series of talks which we are now sharing with the rest of the Data Engineering community! In this video, Sr.

article thumbnail

1. Streamlining Membership Data Engineering at Netflix with Psyberg

The Netflix TechBlog

By Abhinaya Shetty , Bharath Mummadisetty At Netflix, our Membership and Finance Data Engineering team harnesses diverse data related to plans, pricing, membership life cycle, and revenue to fuel analytics, power various dashboards, and make data-informed decisions. What is late-arriving data? Let’s dive in!

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

A Recap of the Data Engineering Open Forum at Netflix

The Netflix TechBlog

A summary of sessions at the first Data Engineering Open Forum at Netflix on April 18th, 2024 The Data Engineering Open Forum at Netflix on April 18th, 2024. At Netflix, we aspire to entertain the world, and our data engineering teams play a crucial role in this mission by enabling data-driven decision-making at scale.

article thumbnail

Data Engineers of Netflix?—?Interview with Pallavi Phadnis

The Netflix TechBlog

Data Engineers of Netflix?—?Interview Interview with Pallavi Phadnis This post is part of our “ Data Engineers of Netflix ” series, where our very own data engineers talk about their journeys to Data Engineering @ Netflix. Pallavi Phadnis is a Senior Software Engineer at Netflix.

article thumbnail

Automated Testing in Data Engineering: An Imperative for Quality and Efficiency

DZone

In the data-driven landscape of today, automation has become indispensable across industries, not just to maximize efficiency but, more importantly, to ensure quality. This holds true for the critical field of data engineering as well.

article thumbnail

Introducing Impressions at Netflix

The Netflix TechBlog

It requires a state-of-the-art system that can track and process these impressions while maintaining a detailed history of each profiles exposure. This nuanced integration of data and technology empowers us to offer bespoke content recommendations. This queue ensures we are consistently capturing raw events from our global userbase.

Tuning 165
article thumbnail

2. Diving Deeper into Psyberg: Stateless vs Stateful Data Processing

The Netflix TechBlog

By Abhinaya Shetty , Bharath Mummadisetty In the inaugural blog post of this series, we introduced you to the state of our pipelines before Psyberg and the challenges with incremental processing that led us to create the Psyberg framework within Netflix’s Membership and Finance data engineering team.