Remove Cache Remove Latency Remove Storage
article thumbnail

The Power of Caching: Boosting API Performance and Scalability

DZone

Caching is the process of storing frequently accessed data or resources in a temporary storage location, such as memory or disk, to improve retrieval speed and reduce the need for repetitive processing.

Cache 246
article thumbnail

Consistent caching mechanism in Titus Gateway

The Netflix TechBlog

We introduce a caching mechanism in the API gateway layer, allowing us to offload processing from singleton leader elected controllers without giving up strict data consistency and guarantees clients observe. When a new leader is elected it loads all data from external storage. The cache is kept in sync with the current leader process.

Cache 235
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Introducing Netflix’s Key-Value Data Abstraction Layer

The Netflix TechBlog

These include challenges with tail latency and idempotency, managing “wide” partitions with many rows, handling single large “fat” columns, and slow response pagination. It also serves as central configuration of access patterns such as consistency or latency targets.

Latency 254
article thumbnail

Designing Instagram

High Scalability

Firstly, the synchronous process which is responsible for uploading image content on file storage, persisting the media metadata in graph data-storage, returning the confirmation message to the user and triggering the process to update the user activity. Fetching User Feed. Sample Queries supported by Graph Database. Optimization.

Design 334
article thumbnail

Netflix’s Distributed Counter Abstraction

The Netflix TechBlog

By: Rajiv Shringi , Oleksii Tkachuk , Kartik Sathyanarayanan Introduction In our previous blog post, we introduced Netflix’s TimeSeries Abstraction , a distributed service designed to store and query large volumes of temporal event data with low millisecond latencies. Today, we’re excited to present the Distributed Counter Abstraction.

Latency 253
article thumbnail

Netflix Cloud Packaging in the Terabyte Era

The Netflix TechBlog

From chunk encoding to assembly and packaging, the result of each previous processing step must be uploaded to cloud storage and then downloaded by the next processing step. Uploading and downloading data always come with a penalty, namely latency.

Cloud 242
article thumbnail

Introducing Netflix TimeSeries Data Abstraction Layer

The Netflix TechBlog

Rajiv Shringi Vinay Chella Kaidan Fullerton Oleksii Tkachuk Joey Lynch Introduction As Netflix continues to expand and diversify into various sectors like Video on Demand and Gaming , the ability to ingest and store vast amounts of temporal data — often reaching petabytes — with millisecond access latency has become increasingly vital.

Latency 242