Remove Cache Remove Efficiency Remove Latency
article thumbnail

Architectural Insights: Designing Efficient Multi-Layered Caching With Instagram Example

DZone

Caching is a critical technique for optimizing application performance by temporarily storing frequently accessed data, allowing for faster retrieval during subsequent requests. Multi-layered caching involves using multiple levels of cache to store and retrieve data.

Cache 173
article thumbnail

The Power of Caching: Boosting API Performance and Scalability

DZone

Caching is the process of storing frequently accessed data or resources in a temporary storage location, such as memory or disk, to improve retrieval speed and reduce the need for repetitive processing. Bandwidth optimization: Caching reduces the amount of data transferred over the network, minimizing bandwidth usage and improving efficiency.

Cache 246
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Introducing Netflix’s Key-Value Data Abstraction Layer

The Netflix TechBlog

These include challenges with tail latency and idempotency, managing “wide” partitions with many rows, handling single large “fat” columns, and slow response pagination. This model supports both simple and complex data models, balancing flexibility and efficiency.

Latency 256
article thumbnail

Netflix’s Distributed Counter Abstraction

The Netflix TechBlog

By: Rajiv Shringi , Oleksii Tkachuk , Kartik Sathyanarayanan Introduction In our previous blog post, we introduced Netflix’s TimeSeries Abstraction , a distributed service designed to store and query large volumes of temporal event data with low millisecond latencies. Today, we’re excited to present the Distributed Counter Abstraction.

Latency 247
article thumbnail

Predictive CPU isolation of containers at Netflix

The Netflix TechBlog

Because microprocessors are so fast, computer architecture design has evolved towards adding various levels of caching between compute units and the main memory, in order to hide the latency of bringing the bits to the brains. This avoids thrashing caches too much for B and evens out the pressure on the L3 caches of the machine.

Cache 255
article thumbnail

Dynatrace accelerates business transformation with new AI observability solution

Dynatrace

The RAG process begins by summarizing and converting user prompts into queries that are sent to a search platform that uses semantic similarities to find relevant data in vector databases, semantic caches, or other online data sources. Observing AI models Running AI models at scale can be resource-intensive.

Cache 276
article thumbnail

Netflix Cloud Packaging in the Terabyte Era

The Netflix TechBlog

Figure 1: A Simplified Video Processing Pipeline With this architecture, chunk encoding is very efficient and processed in distributed cloud computing instances. Uploading and downloading data always come with a penalty, namely latency. For write operations, those challenges do not apply.

Cloud 240