Remove Big Data Remove Efficiency Remove Processing
article thumbnail

Data Storage Formats for Big Data Analytics: Performance and Cost Implications of Parquet, Avro, and ORC

DZone

Efficient data processing is crucial for businesses and organizations that rely on big data analytics to make informed decisions. One key factor that significantly affects the performance of data processing is the storage format of the data.

Big Data 278
article thumbnail

Cutting Big Data Costs: Effective Data Processing With Apache Spark

DZone

In today's data-driven world, efficient data processing plays a pivotal role in the success of any project. Apache Spark , a robust open-source data processing framework, has emerged as a game-changer in this domain.

Big Data 279
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

What is Greenplum Database? Intro to the Big Data Database

Scalegrid

Greenplum Database is a massively parallel processing (MPP) SQL database that is built and based on PostgreSQL. It can scale towards a multi-petabyte level data workload without a single issue, and it allows access to a cluster of powerful servers that will work together within a single SQL interface where you can view all of the data.

Big Data 321
article thumbnail

Write Optimized Spark Code for Big Data Applications

DZone

Apache Spark is a powerful open-source distributed computing framework that provides a variety of APIs to support big data processing. Broadcast variables can be used to efficiently distribute large read-only data structures, such as lookup tables, to worker nodes.

Big Data 173
article thumbnail

Incremental Processing using Netflix Maestro and Apache Iceberg

The Netflix TechBlog

by Jun He , Yingyi Zhang , and Pawan Dixit Incremental processing is an approach to process new or changed data in workflows. The key advantage is that it only incrementally processes data that are newly added or updated to a dataset, instead of re-processing the complete dataset.

article thumbnail

In-Stream Big Data Processing

Highly Scalable

The shortcomings and drawbacks of batch-oriented data processing were widely recognized by the Big Data community quite a long time ago. It became clear that real-time query processing and in-stream processing is the immediate need in many practical applications. Fault-tolerance.

Big Data 154
article thumbnail

An overview of end-to-end entity resolution for big data

The Morning Paper

An overview of end-to-end entity resolution for big data , Christophides et al., It’s an important part of many modern data workflows, and an area I’ve been wrestling with in one of my own projects. The processing mode – traditional batch (with or without budget constraints), or incremental. Block processing.