This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
DataEngineers of Netflix?—?Interview Interview with Kevin Wylie This post is part of our “DataEngineers of Netflix” series, where our very own dataengineers talk about their journeys to DataEngineering @ Netflix. Kevin, what drew you to dataengineering?
DataEngineers of Netflix?—?Interview Interview with Samuel Setegne Samuel Setegne This post is part of our “DataEngineers of Netflix” interview series, where our very own dataengineers talk about their journeys to DataEngineering @ Netflix. What drew you to Netflix?
This enables us to optimize their experience at speed. Instead of relying on engineers to productionize scientific contributions, we’ve made a strategic bet to build an architecture that enables data scientists to easily contribute. Our data scientists faced numerous challenges in our previous infrastructure.
For example, a job would reprocess aggregates for the past 3 days because it assumes that there would be late arriving data, but data prior to 3 days isn’t worth the cost of reprocessing. Backfill: Backfilling datasets is a common operation in bigdata processing. data arrives too late to be useful).
These characteristics allow for an on-call response time that is relaxed and more in line with traditional bigdata analytical pipelines. Spark could look up and retrieve the data in the s3 files that the Mouthful represented. And excellent logging is needed for debugging purposes and supportability.
Today, I am excited to share with you a brand new service called Amazon QuickSight that aims to simplify the process of deriving insights from a wide variety of data sources in a fast and affordable manner. Bigdata challenges. We believe this is one of the critical parts of our bigdata offerings.
They require teams of dataengineers to spend months building complex data models and synthesizing the data before they can generate their first report. The cost and complexity to implement, scale, and use BI makes it difficult for most companies to make data analysis ubiquitous across their organizations.
In 2018, we will see new data integration patterns those rely either on a shared high-performance distributed storage interface ( Alluxio ) or a common data format ( Apache Arrow ) sitting between compute and storage. For instance, Alluxio, originally known as Tachyon, can potentially use Arrow as its in-memory data structure.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content