Remove Big Data Remove Data Engineering Remove Scalability
article thumbnail

A Recap of the Data Engineering Open Forum at Netflix

The Netflix TechBlog

A summary of sessions at the first Data Engineering Open Forum at Netflix on April 18th, 2024 The Data Engineering Open Forum at Netflix on April 18th, 2024. At Netflix, we aspire to entertain the world, and our data engineering teams play a crucial role in this mission by enabling data-driven decision-making at scale.

article thumbnail

Data Engineers of Netflix?—?Interview with Dhevi Rajendran

The Netflix TechBlog

Data Engineers of Netflix?—?Interview Interview with Dhevi Rajendran Dhevi Rajendran This post is part of our “Data Engineers of Netflix” interview series, where our very own data engineers talk about their journeys to Data Engineering @ Netflix. Data Engineers of Netflix?—?Interview

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Kubernetes for Big Data Workloads

Abhishek Tiwari

Kubernetes has emerged as go to container orchestration platform for data engineering teams. In 2018, a widespread adaptation of Kubernetes for big data processing is anitcipated. Organisations are already using Kubernetes for a variety of workloads [1] [2] and data workloads are up next. Key challenges.

article thumbnail

Building and Scaling Data Lineage at Netflix to Improve Data Infrastructure Reliability, and…

The Netflix TechBlog

We adopted the following mission statement to guide our investments: “Provide a complete and accurate data lineage system enabling decision-makers to win moments of truth.” Nonetheless, Netflix data landscape (see below) is complex and many teams collaborate effectively for sharing the responsibility of our data system management.

article thumbnail

Optimizing dbt and Google’s BigQuery

DZone

Setting up a data warehouse is the first step towards fully utilizing big data analysis. Still, it is one of many that need to be taken before you can generate value from the data you gather. An important step in that chain of the process is data modeling and transformation.

Big Data 191
article thumbnail

Incremental Processing using Netflix Maestro and Apache Iceberg

The Netflix TechBlog

Whether in analyzing A/B tests, optimizing studio production, training algorithms, investing in content acquisition, detecting security breaches, or optimizing payments, well structured and accurate data is foundational. Backfill: Backfilling datasets is a common operation in big data processing. past 3 hours or 10 days).

article thumbnail

Orchestrating Data/ML Workflows at Scale With Netflix Maestro

The Netflix TechBlog

As Big data and ML became more prevalent and impactful, the scalability, reliability, and usability of the orchestrating ecosystem have increasingly become more important for our data scientists and the company. Another dimension of scalability to consider is the size of the workflow.

Java 208