Remove Big Data Remove Data Engineering Remove Infrastructure
article thumbnail

Data Engineers of Netflix?—?Interview with Pallavi Phadnis

The Netflix TechBlog

Data Engineers of Netflix?—?Interview Interview with Pallavi Phadnis This post is part of our “ Data Engineers of Netflix ” series, where our very own data engineers talk about their journeys to Data Engineering @ Netflix. Pallavi Phadnis is a Senior Software Engineer at Netflix.

article thumbnail

Building and Scaling Data Lineage at Netflix to Improve Data Infrastructure Reliability, and…

The Netflix TechBlog

Building and Scaling Data Lineage at Netflix to Improve Data Infrastructure Reliability, and Efficiency By: Di Lin , Girish Lingappa , Jitender Aswani Imagine yourself in the role of a data-inspired decision maker staring at a metric on a dashboard about to make a critical business decision but pausing to ask a question?—?“Can

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

What is IT automation?

Dynatrace

With ever-evolving infrastructure, services, and business objectives, IT teams can’t keep up with routine tasks that require human intervention. This requires significant data engineering efforts, as well as work to build machine-learning models. Big data automation tools. Batch process automation.

article thumbnail

Hyper Scale VPC Flow Logs enrichment to provide Network Insight

The Netflix TechBlog

Cloud Network Insight is a suite of solutions that provides both operational and analytical insight into the Cloud Network Infrastructure to address the identified problems. As with any sustainable engineering design, focusing on simplicity is very important. And excellent logging is needed for debugging purposes and supportability.

Network 152
article thumbnail

Expanding the Cloud: Introducing Amazon QuickSight

All Things Distributed

In such a data intensive environment, making key business decisions such as running marketing and sales campaigns, logistic planning, financial analysis and ad targeting require deriving insights from these data. However, the data infrastructure to collect, store and process data is geared toward developers (e.g.,

Cloud 114
article thumbnail

Optimizing data warehouse storage

The Netflix TechBlog

Some of the optimizations are prerequisites for a high-performance data warehouse. Sometimes Data Engineers write downstream ETLs on ingested data to optimize the data/metadata layouts to make other ETL processes cheaper and faster.

Storage 208
article thumbnail

A Day in the Life of an Experimentation and Causal Inference Scientist @ Netflix

The Netflix TechBlog

At Netflix, our data scientists span many areas of technical specialization, including experimentation, causal inference, machine learning, NLP, modeling, and optimization. Together with data analytics and data engineering, we comprise the larger, centralized Data Science and Engineering group.

Analytics 212