Remove Big Data Remove Data Engineering Remove Event
article thumbnail

A Recap of the Data Engineering Open Forum at Netflix

The Netflix TechBlog

A summary of sessions at the first Data Engineering Open Forum at Netflix on April 18th, 2024 The Data Engineering Open Forum at Netflix on April 18th, 2024. At Netflix, we aspire to entertain the world, and our data engineering teams play a crucial role in this mission by enabling data-driven decision-making at scale.

article thumbnail

Data Engineers of Netflix?—?Interview with Pallavi Phadnis

The Netflix TechBlog

Data Engineers of Netflix?—?Interview Interview with Pallavi Phadnis This post is part of our “ Data Engineers of Netflix ” series, where our very own data engineers talk about their journeys to Data Engineering @ Netflix. Pallavi Phadnis is a Senior Software Engineer at Netflix.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

What is IT automation?

Dynatrace

At its most basic, automating IT processes works by executing scripts or procedures either on a schedule or in response to particular events, such as checking a file into a code repository. When monitoring tools release a stream of alerts, teams can easily identify which ones are false and assess whether an event requires human intervention.

article thumbnail

Building and Scaling Data Lineage at Netflix to Improve Data Infrastructure Reliability, and…

The Netflix TechBlog

We adopted the following mission statement to guide our investments: “Provide a complete and accurate data lineage system enabling decision-makers to win moments of truth.” Data Enrichment The lineage data, when enriched with entity metadata and associated relationships, become more valuable to deliver on a rich set of business cases.

article thumbnail

Kubernetes for Big Data Workloads

Abhishek Tiwari

Kubernetes has emerged as go to container orchestration platform for data engineering teams. In 2018, a widespread adaptation of Kubernetes for big data processing is anitcipated. Organisations are already using Kubernetes for a variety of workloads [1] [2] and data workloads are up next. Key challenges.

article thumbnail

Optimizing data warehouse storage

The Netflix TechBlog

Some of the optimizations are prerequisites for a high-performance data warehouse. Sometimes Data Engineers write downstream ETLs on ingested data to optimize the data/metadata layouts to make other ETL processes cheaper and faster. Both automatic (event-driven) as well as manual (ad-hoc) optimization.

Storage 212
article thumbnail

Hyper Scale VPC Flow Logs enrichment to provide Network Insight

The Netflix TechBlog

It is easier to tune a large Spark job for a consistent volume of data. As you may know, S3 can emit messages when events (such as a file creation events) occur which can be directed into an AWS SQS queue. These events represent a specific cut of data from the table.

Network 154