This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
A summary of sessions at the first DataEngineering Open Forum at Netflix on April 18th, 2024 The DataEngineering Open Forum at Netflix on April 18th, 2024. At Netflix, we aspire to entertain the world, and our dataengineering teams play a crucial role in this mission by enabling data-driven decision-making at scale.
DataEngineers of Netflix?—?Interview Interview with Pallavi Phadnis This post is part of our “ DataEngineers of Netflix ” series, where our very own dataengineers talk about their journeys to DataEngineering @ Netflix. Pallavi Phadnis is a Senior Software Engineer at Netflix.
DataEngineers of Netflix?—?Interview Interview with Samuel Setegne Samuel Setegne This post is part of our “DataEngineers of Netflix” interview series, where our very own dataengineers talk about their journeys to DataEngineering @ Netflix. What drew you to Netflix?
Ultimately, IT automation can deliver consistency, efficiency, and better business outcomes for modern enterprises. Automating IT practices offers enterprises faster data centers and cloud operations, as well as increased flexibility and accuracy. IT automation tools can achieve enterprise-wide efficiency. Read eBook now!
Building and Scaling Data Lineage at Netflix to Improve Data Infrastructure Reliability, and Efficiency By: Di Lin , Girish Lingappa , Jitender Aswani Imagine yourself in the role of a data-inspired decision maker staring at a metric on a dashboard about to make a critical business decision but pausing to ask a question?—?“Can
Welcome to the first post in our exciting series on mastering offline data pipeline's best practices, focusing on the potent combination of Apache Airflow and data processing engines like Hive and Spark. Working together, they form the backbone of many modern dataengineering solutions.
Operational automation–including but not limited to, auto diagnosis, auto remediation, auto configuration, auto tuning, auto scaling, auto debugging, and auto testing–is key to the success of modern data platforms. the retry success probability) and compute cost efficiency (i.e., Multi-objective optimizations.
It also improves the engineering productivity by simplifying the existing pipelines and unlocking the new patterns. We will show how we are building a clean and efficient incremental processing solution (IPS) by using Netflix Maestro and Apache Iceberg. Backfill: Backfilling datasets is a common operation in bigdata processing.
Maintaining Uber’s large-scale data warehouse comes with an operational cost in terms of ETL functions and storage. In our experience, optimizing for operational efficiency requires answering one key question: for which tables does the maintenance cost supersede utility?
We built AutoOptimize to efficiently and transparently optimize the data and metadata storage layout while maximizing their cost and performance benefits. This article will list some of the use cases of AutoOptimize, discuss the design principles that help enhance efficiency, and present the high-level architecture.
I bring my breadth of bigdata tools and technologies while Julie has been building statistical models for the past decade. Julie] Chris and I have the same primary stakeholders (or engineering team that we support): Encoding Technologies. It’s one big optimization problem that requires balancing several different factors.
by Jun He , Akash Dwivedi , Natallia Dzenisenka , Snehal Chennuru , Praneeth Yenugutala , Pawan Dixit At Netflix, Data and Machine Learning (ML) pipelines are widely used and have become central for the business, representing diverse use cases that go beyond recommendations, predictions and data transformations.
At Netflix, our data scientists span many areas of technical specialization, including experimentation, causal inference, machine learning, NLP, modeling, and optimization. Together with data analytics and dataengineering, we comprise the larger, centralized Data Science and Engineering group.
Scrapinghub is hiring a Senior Software Engineer (BigData/AI). this is going to be a challenging journey for any backend engineer! Etleap is analyst-friendly , enterprise-grade ETL-as-a-service , built for Redshift and Snowflake data warehouses and S3/Glue data lakes. Who's Hiring?
Scrapinghub is hiring a Senior Software Engineer (BigData/AI). this is going to be a challenging journey for any backend engineer! Etleap is analyst-friendly , enterprise-grade ETL-as-a-service , built for Redshift and Snowflake data warehouses and S3/Glue data lakes. Try out their platform.
Scrapinghub is hiring a Senior Software Engineer (BigData/AI). this is going to be a challenging journey for any backend engineer! Etleap is analyst-friendly , enterprise-grade ETL-as-a-service , built for Redshift and Snowflake data warehouses and S3/Glue data lakes. Try out their platform.
Scrapinghub is hiring a Senior Software Engineer (BigData/AI). this is going to be a challenging journey for any backend engineer! Etleap is analyst-friendly , enterprise-grade ETL-as-a-service , built for Redshift and Snowflake data warehouses and S3/Glue data lakes. Try out their platform.
Scrapinghub is hiring a Senior Software Engineer (BigData/AI). this is going to be a challenging journey for any backend engineer! Etleap is analyst-friendly , enterprise-grade ETL-as-a-service , built for Redshift and Snowflake data warehouses and S3/Glue data lakes. Try out their platform.
Scrapinghub is hiring a Senior Software Engineer (BigData/AI). this is going to be a challenging journey for any backend engineer! Etleap is analyst-friendly , enterprise-grade ETL-as-a-service , built for Redshift and Snowflake data warehouses and S3/Glue data lakes. Try out their platform.
A unified data management (UDM) system combines the best of data warehouses, data lakes, and streaming without expensive and error-prone ETL. It offers reliability and performance of a data warehouse, real-time and low-latency characteristics of a streaming system, and scale and cost-efficiency of a data lake.
In the era of bigdata and complex data processing, data pipelines have emerged as a popular solution for managing and manipulating data. They provide a systematic approach to extract, transform, and load (ETL) data from various sources, enabling organizations to derive valuable insights.
Instead of relying on engineers to productionize scientific contributions, we’ve made a strategic bet to build an architecture that enables data scientists to easily contribute. The two main challenges with this approach are establishing an easy contribution framework and handling Netflix’s scale of data.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content