Remove Big Data Remove Data Engineering Remove Database
article thumbnail

Data Engineers of Netflix?—?Interview with Kevin Wylie

The Netflix TechBlog

Data Engineers of Netflix?—?Interview Interview with Kevin Wylie This post is part of our “Data Engineers of Netflix” series, where our very own data engineers talk about their journeys to Data Engineering @ Netflix. Kevin, what drew you to data engineering?

article thumbnail

Building and Scaling Data Lineage at Netflix to Improve Data Infrastructure Reliability, and…

The Netflix TechBlog

We adopted the following mission statement to guide our investments: “Provide a complete and accurate data lineage system enabling decision-makers to win moments of truth.” Netflix’s diverse data landscape made it challenging to capture all the right data and conforming it to a common data model.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Optimizing data warehouse storage

The Netflix TechBlog

Some of the optimizations are prerequisites for a high-performance data warehouse. Sometimes Data Engineers write downstream ETLs on ingested data to optimize the data/metadata layouts to make other ETL processes cheaper and faster. Both automatic (event-driven) as well as manual (ad-hoc) optimization.

Storage 212
article thumbnail

Orchestrating Data/ML Workflows at Scale With Netflix Maestro

The Netflix TechBlog

by Jun He , Akash Dwivedi , Natallia Dzenisenka , Snehal Chennuru , Praneeth Yenugutala , Pawan Dixit At Netflix, Data and Machine Learning (ML) pipelines are widely used and have become central for the business, representing diverse use cases that go beyond recommendations, predictions and data transformations.

Java 211
article thumbnail

Expanding the Cloud: Introducing Amazon QuickSight

All Things Distributed

However, the data infrastructure to collect, store and process data is geared toward developers (e.g., In AWS’ quest to enable the best data storage options for engineers, we have built several innovative database solutions like Amazon RDS, Amazon RDS for Aurora, Amazon DynamoDB, and Amazon Redshift.

Cloud 112
article thumbnail

5 data integration trends that will define the future of ETL in 2018

Abhishek Tiwari

ETL refers to extract, transform, load and it is generally used for data warehousing and data integration. ETL is a product of the relational database era and it has not evolved much in last decade. There are several emerging data trends that will define the future of ETL in 2018. Machine learning meets data integration.

article thumbnail

How LinkedIn Serves Over 4.8 Million Member Profiles per Second

InfoQ

LinkedIn introduced Couchbase as a centralized caching tier for scaling member profile reads to handle increasing traffic that has outgrown their existing database cluster. The new solution achieved over 99% hit rate, helped reduce tail latencies by more than 60% and costs by 10% annually. By Rafal Gancarz

Cache 86