This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Perhaps the most interesting lesson/reminder is this: it takes a lot of effort to tune a Linux kernel. Google’s data center kernel is carefully performance tuned for their workloads. A micro-benchmark suite, LEBench was then built around tee system calls responsible for most of the time spent in the kernel. Headline results.
A co-worker introduced me to Craig Hanson and Pat Crain's performance mantras, which neatly summarize much of what we do in performance analysis and tuning. These have inspired me to summarize another performance activity: evaluating benchmark accuracy. If the benchmark reported 20k ops/sec, you should ask: why not 40k ops/sec?
A co-worker introduced me to Craig Hanson and Pat Crain's performance mantras, which neatly summarize much of what we do in performance analysis and tuning. These have inspired me to summarize another performance activity: evaluating benchmark accuracy. If the benchmark reported 20k ops/sec, you should ask: why not 40k ops/sec?
Some opinions claim that “Benchmarks are meaningless”, “benchmarks are irrelevant” or “benchmarks are nothing like your real applications” However for others “Benchmarks matter,” as they “account for the processing architecture and speed, memory, storage subsystems and the database engine.”
Instead, focus on understanding what the workloads exercise to help us determine how to best use them to aid our performance assessment. Benchmarking the target Two of the more popular database benchmarks for MySQL are HammerDB and sysbench. For the experiments in this blog, we did not tune the system. 4.22 %usr 38.40
The exercise seemed simple enough — just fix one item in the Colfax code and we should be finished. Published DGEMM benchmark results for the Xeon Phi 7250 processor ( [link] ) show maximum values of about 2100 GFLOPS when using all 68 cores (a very approximate estimate from a bar chart). Instead, we found puzzle after puzzle.
There was no deep goal — just a desire to see the maximum GFLOPS in action. The exercise seemed simple enough — just fix one item in the Colfax code and we should be finished. of the “adjusted peak performance”, there is no longer a significant upside to performance tuning.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content