Remove Architecture Remove Latency Remove Tuning
article thumbnail

RabbitMQ vs. Kafka: Key Differences

Scalegrid

This article outlines the key differences in architecture, performance, and use cases to help determine the best fit for your workload. RabbitMQ follows a message broker model with advanced routing, while Kafkas event streaming architecture uses partitioned logs for distributed processing. What is RabbitMQ? What is Apache Kafka?

Latency 147
article thumbnail

Foundation Model for Personalized Recommendation

The Netflix TechBlog

This scenario underscored the need for a new recommender system architecture where member preference learning is centralized, enhancing accessibility and utility across different models. Yet, many are confined to a brief temporal window due to constraints in serving latency or training costs.

Tuning 157
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Introducing Impressions at Netflix

The Netflix TechBlog

Architecture Overview The first pivotal step in managing impressions begins with the creation of a Source-of-Truth (SOT) dataset. Impression Source-of-Truth architecture Ensuring High Quality Impressions Maintaining the highest quality of impressions is a top priority.

Tuning 165
article thumbnail

Netflix’s Distributed Counter Abstraction

The Netflix TechBlog

By: Rajiv Shringi , Oleksii Tkachuk , Kartik Sathyanarayanan Introduction In our previous blog post, we introduced Netflix’s TimeSeries Abstraction , a distributed service designed to store and query large volumes of temporal event data with low millisecond latencies. Today, we’re excited to present the Distributed Counter Abstraction.

Latency 248
article thumbnail

Migrating Critical Traffic At Scale with No Downtime?—?Part 1

The Netflix TechBlog

Migrating Critical Traffic At Scale with No Downtime — Part 1 Shyam Gala , Javier Fernandez-Ivern , Anup Rokkam Pratap , Devang Shah Hundreds of millions of customers tune into Netflix every day, expecting an uninterrupted and immersive streaming experience. Logging is selective to cases where the old and new responses do not match.

Traffic 345
article thumbnail

Why applying chaos engineering to data-intensive applications matters

Dynatrace

Stream processing One approach to such a challenging scenario is stream processing, a computing paradigm and software architectural style for data-intensive software systems that emerged to cope with requirements for near real-time processing of massive amounts of data. This significantly increases event latency.

article thumbnail

Optimizing your Kubernetes clusters without breaking the bank

Dynatrace

Tuning thousands of parameters has become an impossible task to achieve via a manual and time-consuming approach. The following figure shows the high-level architecture where any load testing solution (e.g. SREcon21 – Automating Performance Tuning with Machine Learning. The Akamas approach. lower than 2%.).

Latency 246