Remove Architecture Remove Data Engineering Remove Speed
article thumbnail

Data Engineers of Netflix?—?Interview with Samuel Setegne

The Netflix TechBlog

Data Engineers of Netflix?—?Interview Interview with Samuel Setegne Samuel Setegne This post is part of our “Data Engineers of Netflix” interview series, where our very own data engineers talk about their journeys to Data Engineering @ Netflix. What drew you to Netflix?

article thumbnail

Introducing Impressions at Netflix

The Netflix TechBlog

Architecture Overview The first pivotal step in managing impressions begins with the creation of a Source-of-Truth (SOT) dataset. The enriched data is seamlessly accessible for both real-time applications via Kafka and historical analysis through storage in an Apache Iceberg table.

Tuning 166
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Reimagining Experimentation Analysis at Netflix

The Netflix TechBlog

This enables us to optimize their experience at speed. Our data scientists often want to apply their knowledge of the business and statistics to fully understand the outcome of an experiment. The two main challenges with this approach are establishing an easy contribution framework and handling Netflix’s scale of data.

Metrics 221
article thumbnail

How Data Inspires Building a Scalable, Resilient and Secure Cloud Infrastructure At Netflix

The Netflix TechBlog

While our engineering teams have and continue to build solutions to lighten this cognitive load (better guardrails, improved tooling, …), data and its derived products are critical elements to understanding, optimizing and abstracting our infrastructure. Give us a holler if you are interested in a thought exchange.

article thumbnail

Incremental Processing using Netflix Maestro and Apache Iceberg

The Netflix TechBlog

These challenges are currently addressed in suboptimal and less cost efficient ways by individual local teams to fulfill the needs, such as Lookback: This is a generic and simple approach that data engineers use to solve the data accuracy problem. Users configure the workflow to read the data in a window (e.g.

article thumbnail

Hyper Scale VPC Flow Logs enrichment to provide Network Insight

The Netflix TechBlog

Spark could look up and retrieve the data in the s3 files that the Mouthful represented. This intermediate step of persisting Mouthfuls allowed us to easily “eat” through S3 event SQS messages at great speed, converting them to far fewer Mouthful SQS Messages which would each be consumed by a single Spark app instance.

Network 154
article thumbnail

Spice up your Analytics: Amazon QuickSight Now Generally Available in N. Virginia, Oregon, and Ireland.

All Things Distributed

The reality is that many traditional BI solutions are built on top of legacy desktop and on-premises architectures that are decades old. They require teams of data engineers to spend months building complex data models and synthesizing the data before they can generate their first report. Enter Amazon QuickSight.

Analytics 126