Remove Architecture Remove Data Engineering Remove Hardware
article thumbnail

These 7 Edge Data Challenges Will Test Companies the Most in 2025

VoltDB

Data interception during transit. Use hardware-based encryption and ensure regular over-the-air updates to maintain device security. Data Overload and Storage Limitations As IoT and especially industrial IoT -based devices proliferate, the volume of data generated at the edge has skyrocketed.

IoT 52
article thumbnail

Microservices Adoption in 2020

O'Reilly

Software engineers comprise the survey audience’s single largest cluster, over one quarter (27%) of respondents (Figure 1). If you combine the different architectural roles—i.e., Adding architects and engineers, we see that roughly 55% of the respondents are directly involved in software development. Figure 1: Respondent roles.

Database 145
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

5 data integration trends that will define the future of ETL in 2018

Abhishek Tiwari

A common theme across all these trends is to remove the complexity by simplifying data management as a whole. In 2018, we anticipate that ETL will either lose relevance or the ETL process will disintegrate and be consumed by new data architectures. Unified data management architecture.

article thumbnail

Kubernetes for Big Data Workloads

Abhishek Tiwari

Kubernetes has emerged as go to container orchestration platform for data engineering teams. In 2018, a widespread adaptation of Kubernetes for big data processing is anitcipated. Organisations are already using Kubernetes for a variety of workloads [1] [2] and data workloads are up next.

article thumbnail

Friends don't let friends build data pipelines

Abhishek Tiwari

Unfortunately, building data pipelines remains a daunting, time-consuming, and costly activity. Not everyone is operating at Netflix or Spotify scale data engineering function. Often companies underestimate the necessary effort and cost involved to build and maintain data pipelines.

Latency 63
article thumbnail

Spice up your Analytics: Amazon QuickSight Now Generally Available in N. Virginia, Oregon, and Ireland.

All Things Distributed

The reality is that many traditional BI solutions are built on top of legacy desktop and on-premises architectures that are decades old. They require teams of data engineers to spend months building complex data models and synthesizing the data before they can generate their first report.

Analytics 126