Remove Analytics Remove Retail Remove Storage
article thumbnail

What is Greenplum Database? Intro to the Big Data Database

Scalegrid

Greenplum Database is an open-source , hardware-agnostic MPP database for analytics, based on PostgreSQL and developed by Pivotal who was later acquired by VMware. This feature-packed database provides powerful and rapid analytics on data that scales up to petabyte volumes. What Exactly is Greenplum? At a glance – TLDR.

Big Data 321
article thumbnail

Unlock the power of contextual log analytics

Dynatrace

This is explained in detail in our blog post, Unlock log analytics: Seamless insights without writing queries. There is no need to think about schema and indexes, re-hydration, or hot/cold storage. Using patent-pending high ingest stream-processing technologies, OpenPipeline currently optimizes data for Dynatrace analytics and AI at 0.5

Analytics 235
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

What is log analytics? How a modern observability approach provides critical business insight

Dynatrace

What is log analytics? Log analytics is the process of viewing, interpreting, and querying log data so developers and IT teams can quickly detect and resolve application and system issues. In what follows, we explore log analytics benefits and challenges, as well as a modern observability approach to log analytics.

Analytics 213
article thumbnail

What is log analytics? How a modern observability approach provides critical business insight

Dynatrace

What is log analytics? Log analytics is the process of viewing, interpreting, and querying log data so developers and IT teams can quickly detect and resolve application and system issues. In what follows, we explore log analytics benefits and challenges, as well as a modern observability approach to log analytics.

Analytics 179
article thumbnail

Intelligent, context-aware AI analytics for all your custom metrics

Dynatrace

This gives you all the benefits of a metric storage system, including exploring and charting metrics, building dashboards, and alerting on anomalies. Let’s take the example of a globally distributed retailer that collects revenue measurements every minute for all its shops worldwide.

Metrics 245
article thumbnail

Dynatrace and Red Hat expand enterprise observability to edge computing

Dynatrace

As an example, many retailers already leverage containerized workloads in-store to enhance customer experiences using video analytics or streamline inventory management using RFID tracking for improved security. These challenges stem from the distributed and often resource-constrained nature of edge computing.

Retail 256
article thumbnail

Pioneering customer-centric pricing models: Decoding ingest-centric vs. answer-centric pricing

Dynatrace

Dynatrace has developed the purpose-built data lakehouse, Grail , eliminating the need for separate management of indexes and storage. All data is readily accessible without storage tiers, such as costly solid-state drives (SSDs). No storage tiers, no archiving or retrieval from archives, and no indexing or reindexing.

Retail 235