Remove Analytics Remove Performance Remove Storage
article thumbnail

Data Storage Formats for Big Data Analytics: Performance and Cost Implications of Parquet, Avro, and ORC

DZone

Efficient data processing is crucial for businesses and organizations that rely on big data analytics to make informed decisions. One key factor that significantly affects the performance of data processing is the storage format of the data.

Big Data 278
article thumbnail

OpenPipeline: Simplify access to critical business data

Dynatrace

Metadata enrichment improves collaboration and increases analytic value. The Dynatrace® platform continues to increase the value of your data — broadening and simplifying real-time access, enriching context, and delivering insightful, AI-augmented analytics. Our Business Analytics solution is a prominent beneficiary of this commitment.

Analytics 241
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

New continuous compliance requirements drive the need to converge observability and security

Dynatrace

Leverage AI for proactive protection: AI and contextual analytics are game changers, automating the detection, prevention, and response to threats in real time. UMELT are kept cost-effectively in a massive parallel processing data lakehouse, enabling contextual analytics at petabyte scale, fast.

Analytics 289
article thumbnail

Unlock the power of contextual log analytics

Dynatrace

This is explained in detail in our blog post, Unlock log analytics: Seamless insights without writing queries. There is no need to think about schema and indexes, re-hydration, or hot/cold storage. Using patent-pending high ingest stream-processing technologies, OpenPipeline currently optimizes data for Dynatrace analytics and AI at 0.5

Analytics 304
article thumbnail

Microsoft Ignite 2024 guide: Cloud observability for AI transformation

Dynatrace

The Grail™ data lakehouse provides fast, auto-indexed, schema-on-read storage with massively parallel processing (MPP) to deliver immediate, contextualized answers from all data at scale. By prioritizing observability, organizations can ensure the availability, performance, and security of business-critical applications.

Cloud 263
article thumbnail

What is log analytics? How a modern observability approach provides critical business insight

Dynatrace

What is log analytics? Log analytics is the process of viewing, interpreting, and querying log data so developers and IT teams can quickly detect and resolve application and system issues. In what follows, we explore log analytics benefits and challenges, as well as a modern observability approach to log analytics.

Analytics 246
article thumbnail

Any analysis, any time: Dynatrace Log Management and Analytics powered by Grail

Dynatrace

Log management and analytics is an essential part of any organization’s infrastructure, and it’s no secret the industry has suffered from a shortage of innovation for several years. Teams have introduced workarounds to reduce storage costs. Current analytics tools are fragmented and lack context for meaningful analysis.

Analytics 264