This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Key insights for executives: Optimize customer experiences through end-to-end contextual analytics from observability, user behavior, and business data. Consolidate real-user monitoring, synthetic monitoring, session replay, observability, and business process analytics tools into a unified platform. Google or Adobe Analytics).
Traditional platforms for streaming analytics don’t offer the combination of granular data tracking and real-time aggregate analysis that logistics applications in operational environments such as these require. With the real-time digital twin model, the next generation of streaming analytics has arrived.
Traditional platforms for streaming analytics don’t offer the combination of granular data tracking and real-time aggregate analysis that logistics applications such as these require. With the real-time digital twin model, the next generation of streaming analytics has arrived.
Traditional platforms for streaming analytics don’t offer the combination of granular data tracking and real-time aggregate analysis that logistics applications in operational environments such as these require. With the real-time digital twin model, the next generation of streaming analytics has arrived.
In such a data intensive environment, making key business decisions such as running marketing and sales campaigns, logistic planning, financial analysis and ad targeting require deriving insights from these data. When you point QuickSight to a data source, data is automatically ingested into SPICE for optimal analytical query performance.
Increased efficiency Leveraging advanced technologies like automation, IoT, AI, and edge computing , intelligent manufacturing streamlines production processes and eliminates inefficiencies, leading to a more profitable operation.
Manufacturing can be fully digitalized to become part of a connected "Internet of Things" (IoT), controlled via the cloud. And control is not the only change: IoT creates many new data streams that, through cloud analytics, provide companies with much deeper insight into their operations and customer engagement.
Today ScaleOut Software announces the release of its ground-breaking cloud service for streaming analytics using the real-time digital twin model. Traditional platforms for streaming analytics attempt to look at the entire telemetry pipeline using techniques such as SQL query to uncover and act on patterns of interest.
Today ScaleOut Software announces the release of its ground-breaking cloud service for streaming analytics using the real-time digital twin model. Traditional platforms for streaming analytics attempt to look at the entire telemetry pipeline using techniques such as SQL query to uncover and act on patterns of interest.
This blog post explains how a new software construct called a real-time digital twin running in a cloud-hosted service can create a breakthrough for streaming analytics. A real-time digital twin would take the next step by hosting a predictive analytics algorithm that analyzes changes in these properties.
This blog post explains how a new software construct called a real-time digital twin running in a cloud-hosted service can create a breakthrough for streaming analytics. A real-time digital twin would take the next step by hosting a predictive analytics algorithm that analyzes changes in these properties.
Real-time data platforms often utilize technologies like streaming data processing , in-memory databases , and advanced analytics to handle large volumes of data at high speeds. IoT applications Real-time data platforms can also power a number of IoT applications. What are the benefits of a real-time data platform?
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content