This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Greenplum Database is a massively parallel processing (MPP) SQL database that is built and based on PostgreSQL. Greenplum Database is an open-source , hardware-agnostic MPP database for analytics, based on PostgreSQL and developed by Pivotal who was later acquired by VMware. What is an MPP Database?
There are no hosts, no backend, no database – just HTML, CSS, and JavaScript. In fact, Dynatrace customers use OpenKit to monitor many digital touchpoints like ATMs, kiosks, and IoT devices. Now we have performance and errors all covered: Business Analytics. Digital Business Analytics can help answer those questions.
A common question that I get is why do we offer so many database products? To do this, they need to be able to use multiple databases and data models within the same application. Seldom can one database fit the needs of multiple distinct use cases. Seldom can one database fit the needs of multiple distinct use cases.
Introduction Traditionally, SQL has been used for relational databases and data warehouses. For this reason, time-series analytics have proved critical for making sense of real-time market data in financial services, sensor data from IoT devices, and application metrics.
Similar to AWS Lambda , Azure Functions is a serverless compute service by Microsoft that can run code in response to predetermined events or conditions (triggers), such as an order arriving on an IoT system, or a specific queue receiving a new message. Azure IoT Functions, for instance, processes requests for Azure IoT Edge.
AWS Certified Database – Specialty: Database specialists with deep knowledge of relational and non-relational databases and some AWS experience might want to check out this certification. Data analytics. The top AWS certification options. So, what are the best AWS certifications? Machine learning.
The variables that can impact the performance of an application vary; from coding errors or ‘bugs’ in the software, database slowdowns, hosting and network performance, to operating system and device type support. User Experience and Business Analytics ery user journey and maximize business KPIs. From APM to full-stack monitoring.
I am excited to share with you that today we are expanding DynamoDB with streams, cross-region replication, and database triggers. In traditional database architectures, database engines often run a small search engine or data warehouse engines on the same hardware as the database. DynamoDB Cross-region Replication.
In addition to providing visibility for core Azure services like virtual machines, load balancers, databases, and application services, we’re happy to announce support for the following 10 new Azure services, with many more to come soon: Virtual Machines (classic ones). Effortlessly optimize Azure database performance.
Examples of logs include business logs (such as user activity logs) and Operation and Maintenance logs of servers, databases, and network or IoT devices. Logs often take up the majority of a company's data assets. Logs are the guardian angel of business.
To scale to a larger number of users and support the growth in data volume spurred by social media, web, mobile, IoT, ad-tech, and ecommerce workloads, these tools require customers to invest in even more infrastructure to maintain performance. Getting started with QuickSight is simple. While QuickSight supports multiple graph types (e.g.,
The population of intelligent IoT devices is exploding, and they are generating more telemetry than ever. The Microsoft Azure IoT ecosystem offers a rich set of capabilities for processing IoT telemetry, from its arrival in the cloud through its storage in databases and data lakes.
The variables that can impact the performance of an application vary; from coding errors or ‘bugs’ in the software, database slowdowns, hosting and network performance, to operating system and device type support. User Experience and Business Analytics ery user journey and maximize business KPIs. From APM to full-stack monitoring.
Choosing the right database often comes down to MongoDB vs MySQL. Whether you need a relational database for complex transactions or a NoSQL database for flexible data storage, weve got you covered. Data modeling is a critical skill for developers to manage and analyze data within these database systems effectively.
Real-Time Device Tracking with In-Memory Computing Can Fill an Important Gap in Today’s Streaming Analytics Platforms. We are increasingly surrounded by intelligent IoT devices, which have become an essential part of our lives and an integral component of business and industrial infrastructures. The list goes on.
In AWS’ quest to enable the best data storage options for engineers, we have built several innovative database solutions like Amazon RDS, Amazon RDS for Aurora, Amazon DynamoDB, and Amazon Redshift. SPICE enables QuickSight to scale to many terabytes of analytical data and deliver response time for most visualization queries in milliseconds.
Causes can run the gamut — from coding errors to database slowdowns to hosting or network performance issues. Telemetry data from a serverless environment is quite different from a database or a virtual machine (VM), for example, but a business still needs to normalize and centrally manage all the information as it comes in.
With the ScaleOut Digital Twin Streaming Service , an Azure-hosted cloud service, ScaleOut Software introduced breakthrough capabilities for streaming analytics using the real-time digital twin concept. Scaleout StreamServer® DT was created to meet this need.
Traditional platforms for streaming analytics don’t offer the combination of granular data tracking and real-time aggregate analysis that logistics applications in operational environments such as these require. With the real-time digital twin model, the next generation of streaming analytics has arrived.
Traditional platforms for streaming analytics don’t offer the combination of granular data tracking and real-time aggregate analysis that logistics applications in operational environments such as these require. With the real-time digital twin model, the next generation of streaming analytics has arrived.
Traditional platforms for streaming analytics don’t offer the combination of granular data tracking and real-time aggregate analysis that logistics applications such as these require. It’s not enough to just pick out interesting events from an aggregated data stream and then send them to a database for offline analysis using Spark.
Today ScaleOut Software announces the release of its ground-breaking cloud service for streaming analytics using the real-time digital twin model. Traditional platforms for streaming analytics attempt to look at the entire telemetry pipeline using techniques such as SQL query to uncover and act on patterns of interest.
Today ScaleOut Software announces the release of its ground-breaking cloud service for streaming analytics using the real-time digital twin model. Traditional platforms for streaming analytics attempt to look at the entire telemetry pipeline using techniques such as SQL query to uncover and act on patterns of interest.
Industrial IoT (IIoT) really means making industrial devices work together so they can communicate better for the sake of ultimately improving data analytics, efficiency, and productivity. But in IIoT, as in other industries, data silos are a huge issue. If your data lives in silos, you’re not making the most of it.
Real-time data platforms often utilize technologies like streaming data processing , in-memory databases , and advanced analytics to handle large volumes of data at high speeds. IoT applications Real-time data platforms can also power a number of IoT applications. What are the benefits of a real-time data platform?
Going back to the mid-1990s, online systems have seen relentless, explosive growth in usage, driven by ecommerce, mobile applications, and more recently, IoT. From Distributed Caches to Real-Time Digital Twins.
Going back to the mid-1990s, online systems have seen relentless, explosive growth in usage, driven by ecommerce, mobile applications, and more recently, IoT. From Distributed Caches to Real-Time Digital Twins.
For example, if an IoT application is attempting to detect whether data from a temperature sensor is predicting the failure of the medical freezer to which it is attached, it looks at patterns in the temperature changes, such as sudden spikes or a continuously upward trend, without regard to the freezer’s usage or service history.
For example, if an IoT application is attempting to detect whether data from a temperature sensor is predicting the failure of the medical freezer to which it is attached, it looks at patterns in the temperature changes, such as sudden spikes or a continuously upward trend, without regard to the freezer’s usage or service history.
HOW VOLT SOLVES LATENCY VS THROUGHPUT, WITHOUT SACRIFICES Volt Active Data is the only real-time data processing platform that combines the immediacy of event stream processing with the state-based consistency of a blazingly fast in-memory database and the decisioning intelligence of a sophisticated rules engine.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content