This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
As cloud complexity increases and security concerns mount, organizations need log analytics to discover and investigate issues and gain critical business intelligence. But exploring the breadth of log analytics scenarios with most log vendors often results in unexpectedly high monthly log bills and aggressive year-over-year costs.
This article is the first in a multi-part series sharing a breadth of Analytics Engineering work at Netflix, recently presented as part of our annual internal Analytics Engineering conference. Subsequent posts will detail examples of exciting analytic engineering domain applications and aspects of the technical craft.
There’s a goldmine of business data traversing your IT systems, yet most of it remains untapped. To unlock business value, the data must be: Accessible from anywhere. Data has value only when you can access it, no matter where it lies. Agile business decisions rely on fresh data. Easy to access. Contextualized.
In this blog post, we will see how Dynatrace harnesses the power of observability and analytics to tailor a new experience to easily extend to the left, allowing developers to solve issues faster, build more efficient software, and ultimately improve developer experience!
Dynatrace continues to deliver on its commitment to keeping your data secure in the cloud. Enhancing data separation by partitioning each customer’s data on the storage level and encrypting it with a unique encryption key adds an additional layer of protection against unauthorized data access.
When we launched the new Dynatrace experience, we introduced major updates to the platform, including Grail ™, our innovative data lakehouse unifying observability, security, and business data, and Dynatrace Query Language ( DQL ) for accessing and exploring unified data.
Leverage AI for proactive protection: AI and contextual analytics are game changers, automating the detection, prevention, and response to threats in real time. Move beyond logs-only security: Embrace a comprehensive, end-to-end approach that integrates all data from observability and security.
This article is the second in a multi-part series sharing a breadth of Analytics Engineering work at Netflix, recently presented as part of our annual internal Analytics Engineering conference. Data quality plays a huge role in this work. Need to catch up? Check out Part 1.
Key insights for executives: Optimize customer experiences through end-to-end contextual analytics from observability, user behavior, and business data. Consolidate real-user monitoring, synthetic monitoring, session replay, observability, and business process analytics tools into a unified platform.
Fast and efficient log analysis is critical in todays data-driven IT environments. For enterprises managing complex systems and vast datasets using traditional log management tools, finding specific log entries quickly and efficiently can feel like searching for a needle in a haystack.
AI transformation, modernization, managing intelligent apps, safeguarding data, and accelerating productivity are all key themes at Microsoft Ignite 2024. Adopting AI to enhance efficiency and boost productivity is critical in a time of exploding data, cloud complexities, and disparate technologies.
Efficientdata processing is crucial for businesses and organizations that rely on big dataanalytics to make informed decisions. One key factor that significantly affects the performance of data processing is the storage format of the data.
Scale with confidence: Leverage AI for instant insights and preventive operations Using Dynatrace, Operations, SRE, and DevOps teams can scale efficiently while maintaining software quality and ensuring security and reliability. Dynatrace Dashboards , powered by Grail data lakehouse and Davis AI, offer precisely that.
As a result, organizations are implementing security analytics to manage risk and improve DevSecOps efficiency. Fortunately, CISOs can use security analytics to improve visibility of complex environments and enable proactive protection. What is security analytics? Why is security analytics important?
In today’s data-driven world, businesses across various industry verticals increasingly leverage the Internet of Things (IoT) to drive efficiency and innovation. Mining and public transportation organizations commonly rely on IoT to monitor vehicle status and performance and ensure fuel efficiency and operational safety.
Grail – the foundation of exploratory analytics Grail can already store and process log and business events. Now we’re adding Smartscape to DQL and two new data sources to Grail: Metrics on Grail and Traces on Grail. Ensuring observability across these environments requires access to data at a massive scale.
Key benefits of Runtime Vulnerability Analytics Managing application vulnerabilities is no small feat. Traditional tools often overload you with data, making it challenging to identify which vulnerabilities actually put your environment at risk. Search full vulnerability descriptions for pinpoint accuracy.
Azure observability and Azure dataanalytics are critical requirements amid the deluge of data in Azure cloud computing environments. requires Azure observability Data has become a pivotal asset in the current IT landscape, and AI has unequivocally become the linchpin for differentiation. Digital transformation 2.0
With 99% of organizations using multicloud environments , effectively monitoring cloud operations with AI-driven analytics and automation is critical. IT operations analytics (ITOA) with artificial intelligence (AI) capabilities supports faster cloud deployment of digital products and services and trusted business insights.
Software and data are a company’s competitive advantage. As a result, organizations need software to work perfectly to create customer experiences, deliver innovation, and generate operational efficiency. But for software to work perfectly, organizations need to use data to optimize every phase of the software lifecycle.
Data proliferation—as well as a growing need for data analysis—has accelerated. They now use modern observability to monitor expanding cloud environments in order to operate more efficiently, innovate faster and more securely, and to deliver consistently better business results. We’ll post news here as it happens!
We are in the era of data explosion, hybrid and multicloud complexities, and AI growth. Dynatrace analyzes billions of interconnected data points to deliver answers, not just data and dashboards sending signals without a path to resolution. Picture gaining insights into your business from the perspective of your users.
This is where observability analytics can help. What is observability analytics? Observability analytics enables users to gain new insights into traditional telemetry data such as logs, metrics, and traces by allowing users to dynamically query any data captured and to deliver actionable insights.
The growing challenge in modern IT environments is the exponential increase in log telemetry data, driven by the expansion of cloud-native, geographically distributed, container- and microservice-based architectures. Organizations need a more proactive approach to log management to tame this proliferation of cloud data.
DevOps and security teams managing today’s multicloud architectures and cloud-native applications are facing an avalanche of data. This has resulted in visibility gaps, siloed data, and negative effects on cross-team collaboration. At the same time, the number of individual observability and security tools has grown.
Data processing in the cloud has become increasingly popular due to its scalability, flexibility, and cost-effectiveness. This article will explore how these technologies can be used together to create an optimized data pipeline for data processing in the cloud.
However, your responsibilities might change or expand, and you need to work with unfamiliar data sets. This is where Davis AI for exploratory analytics can make all the difference. Davis AI is particularly powerful because it can be applied to any numeric time series chart independently of data source or use case.
In today’s digital landscape, ensuring payment card data security is paramount. Achieving PCI DSS compliance is crucial for any organization that handles card payments, as it helps prevent data breaches and fraud. Operations teams can operate efficiently and securely, reducing support tickets by up to 99%. What is PCI DSS?
To stay competitive in an increasingly digital landscape, organizations seek easier access to business analyticsdata from IT to make better business decisions faster. As organizations add more tools, it creates a demand for common tooling, shared data, and democratized access. But getting the value out of the data is not easy.
It can scale towards a multi-petabyte level data workload without a single issue, and it allows access to a cluster of powerful servers that will work together within a single SQL interface where you can view all of the data. This feature-packed database provides powerful and rapid analytics on data that scales up to petabyte volumes.
Organizations choose data-driven approaches to maximize the value of their data, achieve better business outcomes, and realize cost savings by improving their products, services, and processes. However, there are many obstacles and limitations along the way to becoming a data-driven organization. Understanding the context.
OpenTelemetry signals are often analyzed in data silos with missing context and relationships between the data and underlying topology. This leads to significant time wasted in connecting data with application workloads by manually applying labels, or by building crosslinks between the dashboards of incompatible tools.
However, amidst this rapid evolution, ensuring a robust data universe characterized by high quality and integrity is indispensable. While much emphasis is often placed on refining AI models, the significance of pristine datasets can sometimes be overshadowed.
In such a fragmented landscape, having clear, real-time insights into granular data for every system is crucial. AI and machine learning can be used to gain deeper insights into your data, improve business outcomes, and help you pull ahead of the competition. How do you make this happen?
For IT infrastructure managers and site reliability engineers, or SREs , logs provide a treasure trove of data. But on their own, logs present just another data silo as IT professionals attempt to troubleshoot and remediate problems. Data volume explosion in multicloud environments poses log issues.
Costs and their origin are transparent, and teams are fully accountable for the efficient usage of cloud resources. These enhancements enable you to extract more value from your data, leading to wider adoption across enterprise departments. Figure 4: Set up an anomaly detector for peak cost events.
Through this integration, Dynatrace enriches data collected by Microsoft Sentinel to provide organizations with enhanced data insights in context of their full technology stack. They can automatically identify vulnerabilities, measure risks, and leverage advanced analytics and automation to mitigate issues. Audit logs.
How do you get more value from petabytes of exponentially exploding, increasingly heterogeneous data? The short answer: The three pillars of observability—logs, metrics, and traces—converging on a data lakehouse. To solve this problem, Dynatrace launched Grail, its causational data lakehouse , in 2022.
To continue down the carbon reduction path, IT leaders must drive carbon optimization initiatives into the hands of IT operations teams, arming them with the tools needed to support analytics and optimization. Power usage effectiveness (PUE) is derived from data provided by the cloud providers and data center operators.
Leveraging business analytics tools helps ensure their experience is zero-friction–a critical facet of business success. How do business analytics tools work? Business analytics begins with choosing the business KPIs or tracking goals needed for a specific use case, then determining where you can capture the supporting metrics.
In today's data-driven world, efficientdata processing plays a pivotal role in the success of any project. Apache Spark , a robust open-source data processing framework, has emerged as a game-changer in this domain.
Starting in May, selected customers will get to experience all the latest Dynatrace platform features, including the Grail data lakehouse, Davis AI, and unrivaled log analytics, on Google Cloud. DQL is a powerful tool to explore data across multicloud environments and Google Cloud workloads in particular. Dynatrace AppEngine.
Log monitoring, log analysis, and log analytics are more important than ever as organizations adopt more cloud-native technologies, containers, and microservices-based architectures. Logs can include data about user inputs, system processes, and hardware states. What is log analytics? Log monitoring vs log analytics.
Log management and analytics is an essential part of any organization’s infrastructure, and it’s no secret the industry has suffered from a shortage of innovation for several years. Several pain points have made it difficult for organizations to manage their dataefficiently and create actual value.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content