Remove Analytics Remove Big Data Remove Storage
article thumbnail

Data Storage Formats for Big Data Analytics: Performance and Cost Implications of Parquet, Avro, and ORC

DZone

Efficient data processing is crucial for businesses and organizations that rely on big data analytics to make informed decisions. One key factor that significantly affects the performance of data processing is the storage format of the data.

Big Data 278
article thumbnail

What is Greenplum Database? Intro to the Big Data Database

Scalegrid

Greenplum Database is an open-source , hardware-agnostic MPP database for analytics, based on PostgreSQL and developed by Pivotal who was later acquired by VMware. This feature-packed database provides powerful and rapid analytics on data that scales up to petabyte volumes. What Exactly is Greenplum? At a glance – TLDR.

Big Data 321
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Introduction to Azure Data Lake Storage Gen2

DZone

Built on Azure Blob Storage, Azure Data Lake Storage Gen2 is a suite of features for big data analytics. Azure Data Lake Storage Gen1 and Azure Blob Storage's capabilities are combined in Data Lake Storage Gen2.

Azure 250
article thumbnail

Cutting Big Data Costs: Effective Data Processing With Apache Spark

DZone

While this format may not be ideal when you only need to retrieve a few rows from a large partition, it truly excels in analytical use cases. Spark takes full advantage of this storage property by exclusively reading the columns that are involved in subsequent computations.

Big Data 279
article thumbnail

Any analysis, any time: Dynatrace Log Management and Analytics powered by Grail

Dynatrace

Log management and analytics is an essential part of any organization’s infrastructure, and it’s no secret the industry has suffered from a shortage of innovation for several years. Several pain points have made it difficult for organizations to manage their data efficiently and create actual value.

Analytics 246
article thumbnail

In-Stream Big Data Processing

Highly Scalable

The shortcomings and drawbacks of batch-oriented data processing were widely recognized by the Big Data community quite a long time ago. The pipelines can be stateful and the engine’s middleware should provide a persistent storage to enable state checkpointing. Towards Unified Big Data Processing.

Big Data 154
article thumbnail

Microsoft Azure Event Hubs

DZone

Introduction With big data streaming platform and event ingestion service Azure Event Hubs , millions of events can be received and processed in a single second. Any real-time analytics provider or batching/storage adaptor can transform and store data supplied to an event hub.

Azure 306