This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Leverage AI for proactive protection: AI and contextual analytics are game changers, automating the detection, prevention, and response to threats in real time. UMELT are kept cost-effectively in a massive parallel processing data lakehouse, enabling contextual analytics at petabyte scale, fast.
As a result, organizations are implementing security analytics to manage risk and improve DevSecOps efficiency. Fortunately, CISOs can use security analytics to improve visibility of complex environments and enable proactive protection. What is security analytics? Why is security analytics important? Here’s how.
As an executive, I am always seeking simplicity and efficiency to make sure the architecture of the business is as streamlined as possible. This integration eliminates the need for separate data collection, transfer, configuration, storage, and analytics, streamlining operations and reducing costs.
This is explained in detail in our blog post, Unlock log analytics: Seamless insights without writing queries. This architecture also means you are not required to determine your log data use cases beforehand or while analyzing logs within the new logs app.
Its AI-driven exploratory analytics help organizations navigate modern software deployment complexities, quickly identify issues before they arise, shorten remediation journeys, and enable preventive operations. AI-driven analytics transform data analysis, making it faster and easier to uncover insights and act.
DevOps and security teams managing today’s multicloud architectures and cloud-native applications are facing an avalanche of data. Clearly, continuing to depend on siloed systems, disjointed monitoring tools, and manual analytics is no longer sustainable.
By automating OneAgent deployment at the image creation stage, organizations can immediately equip every EC2 instance with real-time monitoring and AI-powered analytics. This integration augments our existing support for OpenTelemetry to provide customers with more flexibility. This solution aligns to the AWS Well-Architected Framework.
Kubernetes teams lack simple, consistent, vendor-agnostic architectures for analyzing observability signals across teams. Second, embracing the complexity of OpenTelemetry signal collection must come with a guaranteed payoff: gaining analytical insights and causal relationships that improve business performance.
Exploratory analytics with collaborative analytics capabilities can be a lifeline for CloudOps, ITOps, site reliability engineering, and other teams struggling to access, analyze, and conquer the never-ending deluge of big data. These analytics can help teams understand the stories hidden within the data and share valuable insights.
Protect data in multi-tenant architectures To bring you the most value by unifying observability and security in one analytics and automation platform powered by AI, Dynatrace SaaS leverages a multitenancy architecture, enabling efficient and scalable data ingestion, querying, and processing on shared infrastructure.
The growing challenge in modern IT environments is the exponential increase in log telemetry data, driven by the expansion of cloud-native, geographically distributed, container- and microservice-based architectures. By following key log analytics and log management best practices, teams can get more business value from their data.
In this blog post, we will see how Dynatrace harnesses the power of observability and analytics to tailor a new experience to easily extend to the left, allowing developers to solve issues faster, build more efficient software, and ultimately improve developer experience!
Log monitoring, log analysis, and log analytics are more important than ever as organizations adopt more cloud-native technologies, containers, and microservices-based architectures. What is log analytics? Log analytics is the process of evaluating and interpreting log data so teams can quickly detect and resolve issues.
Following the launch of Dynatrace® Grail for Log Management and Analytics , we’re excited to announce a major update to our Business Analytics solution. Since they rely on capabilities designed for IT monitoring, they inherit a series of architectural design constraints that limit their usefulness.
Log management and analytics is an essential part of any organization’s infrastructure, and it’s no secret the industry has suffered from a shortage of innovation for several years. Modern IT environments — whether multicloud, on-premises, or hybrid-cloud architectures — generate exponentially increasing data volumes.
Today’s digital businesses run on heterogeneous and highly dynamic architectures with interconnected applications and microservices deployed via Kubernetes and other cloud-native platforms. Common questions include: Where do bottlenecks occur in our architecture? Dynatrace extends its unique topology-based analytics and AIOps approach.
Grail – the foundation of exploratory analytics Grail can already store and process log and business events. Introducing Metrics on Grail Despite their many advantages, modern cloud-native architectures can result in scalability and fragmentation challenges. You no longer need to split, distribute, or pre-aggregate your data.
The latest Dynatrace report, “ The state of observability 2024: Overcoming complexity through AI-driven analytics and automation ,” explores these challenges and highlights how IT, business, and security teams can overcome them with a mature AI, analytics, and automation strategy.
In the field of big data analytics, Apache Doris and Elasticsearch (ES) are frequently utilized for real-time analytics and retrieval tasks. This article offers a detailed comparison across six dimensions: core architecture, query language, real-time capabilities, application scenarios, performance, and enterprise practices.
With 99% of organizations using multicloud environments , effectively monitoring cloud operations with AI-driven analytics and automation is critical. IT operations analytics (ITOA) with artificial intelligence (AI) capabilities supports faster cloud deployment of digital products and services and trusted business insights.
IT pros want a data and analytics solution that doesn’t require tradeoffs between speed, scale, and cost. With a data and analytics approach that focuses on performance without sacrificing cost, IT pros can gain access to answers that indicate precisely which service just went down and the root cause. Real-time anomaly detection.
As a result, organizations are weighing microservices vs. monolithic architecture to improve software delivery speed and quality. Traditional monolithic architectures are built around the concept of large applications that are self-contained, independent, and incorporate myriad capabilities. What is monolithic architecture?
In serverless and microservices architectures, messaging systems are often used to build asynchronous service-to-service communication. We’ve introduced brand-new analytics capabilities by building on top of existing features for messaging systems. Finally, you can configure and activate them there. New to Dynatrace?
This article outlines the key differences in architecture, performance, and use cases to help determine the best fit for your workload. Kafka is optimized for high-throughput event streaming , excelling in real-time analytics and large-scale data ingestion. What is RabbitMQ? What is Apache Kafka?
Azure observability and Azure data analytics are critical requirements amid the deluge of data in Azure cloud computing environments. As digital transformation accelerates and more organizations are migrating workloads to Azure and other cloud environments, they need observability and data analytics capabilities that can keep pace.
Grail combines the big-data storage of a data warehouse with the analytical flexibility of a data lake. With Grail, we have reinvented analytics for converged observability and security data,” Greifeneder says. Logs on Grail Log data is foundational for any IT analytics. Grail and DQL will give you new superpowers.”
One such open-source, distributed search and analytics engine is Elasticsearch, which is very efficient at handling data in large sets and high-velocity queries. However, the process for effectively scaling Elasticsearch can be nuanced, since one needs a proper understanding of the architecture behind it and of performance tradeoffs.
The growing complexity of modern multicloud environments has created a pressing need to converge observability and security analytics. Security analytics is a discipline within IT security that focuses on proactive threat prevention using data analysis. I can keep track of where I went. Clair said.
Key takeaways from this article on modern observability for serverless architecture: As digital transformation accelerates, organizations need to innovate faster and continually deliver value to customers. Companies often turn to serverless architecture to accelerate modernization efforts while simplifying IT management.
In this blog post, we explain what Greenplum is, and break down the Greenplum architecture, advantages, major use cases, and how to get started. Greenplum Database is an open-source , hardware-agnostic MPP database for analytics, based on PostgreSQL and developed by Pivotal who was later acquired by VMware. The Greenplum Architecture.
Without observability, the benefits of ARM are lost Over the last decade and a half, a new wave of computer architecture has overtaken the world. ARM architecture, based on a processor type optimized for cloud and hyperscale computing, has become the most prevalent on the planet, with billions of ARM devices currently in use.
App architecture. First, let’s explore the architecture of these apps: BizOpsConfigurator. Now we have performance and errors all covered: Business Analytics. Digital Business Analytics can help answer those questions. Contact your Dynatrace Sales Engineer for a demo or POC of DEM and Business Analytics.
Authors: Ruoxi Sun (Tech Lead of Analytical Computing Team at PingCAP). TiDB is a Hybrid Transaction/Analytical Processing (HTAP) database that can efficiently process analytical queries. Fei Xu (Software Engineer at PingCAP).
When using Dynatrace, in addition to automatic log collection, you gain full infrastructure context and access to powerful, advanced log analytics tools such as the Logs, Notebooks, and Dashboards apps. For forensic log analytics use cases, the Security Investigator app benefits from the scalability and analytics power of Dynatrace Grail.
In today's fast-paced digital landscape, organizations are increasingly embracing multi-cloud environments and cloud-native architectures to drive innovation and deliver seamless customer experiences.
The rapidly evolving digital landscape is one important factor in the acceleration of such transformations – microservices architectures, service mesh, Kubernetes, Functions as a Service (FaaS), and other technologies now enable teams to innovate much faster. New cloud-native technologies make observability more important than ever….
Editor's Note: The following is an article written for and published in DZone's 2024 Trend Report, Database Systems: Modernization for Data-Driven Architectures. Time series data has become an essential part of data collection in various fields due to its ability to capture trends, patterns, and anomalies.
Analytical Insights Additionally, impression history offers insightful information for addressing a number of platform-related analytics queries. Architecture Overview The first pivotal step in managing impressions begins with the creation of a Source-of-Truth (SOT) dataset.
Grail needs to support security data as well as business analytics data and use cases. With that in mind, Grail needs to achieve three main goals with minimal impact to cost: Cope with and manage an enormous amount of data —both on ingest and analytics. Grail architectural basics. Work with different and independent data types.
A critical security threat for cloud-native architectures SSRF is a web security vulnerability that allows an attacker to make a server-side application send requests to unintended locations. As more organizations adopt cloud-native architectures, the risk of SSRF grows.
Uber uses Presto, an open-source distributed SQL query engine, to provide analytics across several data sources, including Apache Hive, Apache Pinot, MySQL, and Apache Kafka. To improve its performance, Uber engineers explored the advantages of dealing with quick queries, a.k.a.
Runtime threat detection : Uses behavioral analytics to identify attacks in real time. Ultimately, CNAPP is worth it for enterprises with large-scale, multi-cloud architectures, strict compliance needs, and dynamic, ephemeral workloads that require proactive risk mitigation.
These traditional approaches to log monitoring and log analytics thwart IT teams’ goal to address infrastructure performance problems, security threats, and user experience issues. Further, these resources support countless Kubernetes clusters and Java-based architectures. where an error occurred at the code level.
In what follows, we define software automation as well as software analytics and outline their importance. What is software analytics? This involves big data analytics and applying advanced AI and machine learning techniques, such as causal AI. We also discuss the role of AI for IT operations (AIOps) and more.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content